Effect of TSV Joule Heating on Device Performance

Author(s):  
Fahad Mirza ◽  
Gaurang Naware ◽  
Thiagarajan Raman ◽  
Ankur Jain ◽  
Dereje Agonafer

Convergence and miniaturization of consumer electronic products such as cameras, phones, etc. has been driven by enhanced performance and reduced microelectronics size. For past few decades Moore’s law has been driving the microelectronics industry to achieve high performance with small form-factors at a reasonable cost. While the continued miniaturization of the transistors has resulted in unparalleled growth of the electronics industry, further performance increment via size scaling could be cost-ineffective and difficult to manufacture. To satisfy the current/future integrated Circuit (IC) package requirements, vertical integration of chips holds the key, i.e., 3-D packaging. Chip-stacking (3-D) is emerging as a powerful technology to reduce package footprint, decrease interconnection power, higher frequencies, and provide efficient integration of heterogeneous devices. It allows further reduction in the form factor of current systems and eases the interconnect performance limitation since the components are integrated on top of each other instead of side-by-side, resulting in shorter interconnect lengths. Due to high package density and chip-stacking on top of each other, heat dissipation from the stacked chips becomes a concern. To overcome these thermal challenges and provide shorter/faster inter-chip electrical connection, Through Silicon Via (TSV) technology is being implemented in 3-D ICs. TSVs allow 3-D chips to be interconnected directly and provide high speed signal propagation. TSVs provide inter-chip heat/current path but the current flowing through the TSVs results in localized heat generation (Joule Heating) within the silicon, which could be detrimental to the overall performance of the system. In this paper, the effect of Joule heating on the device performance measured by trans-conductance, electron mobility (e− mobility), and channel thermal noise is analyzed. Thinned (100 μm) chips with a uniform power map and evenly distributed TSVs are analyzed in this work. Thermal distribution in the package is studied for different TSV currents including a base-line case of no-current (thermal TSV only) and the junction temperature is determined for each case. The response from the thermal analysis is correlated to the device performance through existing relations. Results indicate that joule heating has a significant effect on the thermal response of the 3D IC and subsequently proves to be detrimental to the chip performance. An understanding of the electrical performance dependence on TSV joule heating is developed through this work.

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Fahad Mirza ◽  
Gaurang Naware ◽  
Ankur Jain ◽  
Dereje Agonafer

Three-dimensional (3D) through-silicon-via (TSV) technology is emerging as a powerful technology to reduce package footprint, decrease interconnection power, higher frequencies, and provide efficient integration of heterogeneous devices. TSVs provide high speed signal propagation due to reduced interconnect lengths as compared to wire-bonding. The current flowing through the TSVs results in localized heat generation (joule heating), which could be detrimental to the device performance. The effect of joule heating on performance measured by transconductance, electron mobility (e− mobility), and channel thermal noise is presented. Results indicate that joule heating has a significant effect on the junction temperature and subsequently results in 10–15% performance hit.


2004 ◽  
Vol 21 (3) ◽  
pp. 29-43 ◽  
Author(s):  
Teck Joo Goh ◽  
K.N. Seetharamu ◽  
G.A. Quadir ◽  
Z.A. Zainal ◽  
K. Jeevan Ganeshamoorthy

This paper presents the thermal analyses carried out to predict the temperature distribution of the silicon chip with non‐uniform power dissipation patterns and to determine the optimal locations of power generating sources in silicon chip design layout that leads to the desired junction temperature, Tj. Key thermal parameters investigated are the heat source placement distance, level of heat dissipation, and magnitude of convection heat transfer coefficient. Finite element method (FEM) is used to investigate the effect of the key parameters. From the FEM results, a multiple linear regression model employing the least‐square method is developed that relates all three parameters into a single correlation which would predict the maximum junction temperature, Tj,max.


2011 ◽  
Vol 687 ◽  
pp. 215-221
Author(s):  
Yuan Yuan Han ◽  
Hong Guo ◽  
Xi Min Zhang ◽  
Fa Zhang Yin ◽  
Ke Chu ◽  
...  

With increasing of the input power of the chips in light emitting diode (LED), the thermal accumulation of LEDs package increases. Therefore solving the heat issue has become a precondition of high power LED application. In this paper, finite element method was used to analyze the thermal field of high power LEDs. The effect of the heatsink structure on the junction temperature was also investigated. The results show that the temperature of the chip is 95.8°C which is the highest, and it meets the requirement. The conductivity of each component affects the thermal resistance. Convective heat exchange is connected with the heat dissipation area. In the original structure of LEDs package the heat convected through the substrate is the highest, accounting for 92.58%. Three heatsinks with fin structure are designed to decrease the junction temperature of the LEDs package.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000325-000332 ◽  
Author(s):  
Alan Huffman ◽  
Philip Garrou

As IC scaling continues to shrink transistors, the increased number of circuits per chip requires more I/O per unit area (Rent's rule). High I/O count, the need for smaller form factors and the need for better electrical performance drove the technological change towards die being interconnected (assembled) by area array techniques. This review will examine this evolution from die wire bonded on lead frames to flip chip die in wafer level or area array packages and discuss emerging technologies such as copper pillar bumps, fan out packaging, integrated passives, and 3D integration..


2017 ◽  
Vol 2017 (1) ◽  
pp. 000353-000359
Author(s):  
Xin Zhao ◽  
K. Jagannadham ◽  
Douglas C. Hopkins

Abstract Wide Bandgap (WBG) power devices have become the most promising solution for power conversion systems, with the best trade-off between theoretical characteristics, real commercial availability and maturity of fabrications. Advanced packaging technology is being heavily developed to take full advantages of WBG devices, in terms of materials, mechanical design, fabrication and electrical performance optimizations. In this paper, a flexible substrate based 1.2kV SiC Half Bridge Intelligent Power Module with stacked dies is introduced. The module design is based on the concept “Power Supply in Package (PSiP)”, high functionality is integrated in the module. Together with power stages, gate driver circuits, Low Dropout Regulators (LDO), digital isolators, and bootstrap circuits are integrated in the module. An ultra-thin flexible epoxy-resin based dielectric is applied in the module as substrates, its thickness can be as low as 80μm, with 8W/mK thermal conductivity. The SiC switches are double-side solderable, with copper as topside metallization on pads. No bonding wires are applied in the SiC PSiP module. The highside and lowside SiC switches on the phase leg is stacked vertically for interconnections with low parasitic and high denstiy. This work mainly addresses performance evaluation of the PSiP SiC half bridge module by multiphysics simulations. Q3D is employed to evaluate the parasitic inductance and resistance in the module, showing that parasitic inductance is lower than 1.5nH in the design. The extracted parasitics is imported in spice circuit model, simulation results show limited ringing during switching transients. Thermal simulations are employed to compare junction temperature of power modules with DBC subtrates and flexible substrates, then to evaluate the thermal performance of the designed PSiP SiC model with stacked dies. It shows that junction temperature of designed IPM is higher than regular module at same condition. The paper also provides guideline for optimized heat sink design to lower junction temperature of the SiC IPM. Mechanical simulations are employed to evaluate the pre-stress induced in modules with DBC substrate and flexible dielectric substrate, and proves that mechanical stress induced by reflowing process can be reduced significantly by using ultra-thin flexible dielectric as substrate.


2014 ◽  
Vol 136 (2) ◽  
Author(s):  
Satish G. Kandlikar

In an effort to increase processor speeds, 3D IC architecture is being aggressively pursued by researchers and chip manufacturers. This architecture allows extremely high level of integration with enhanced electrical performance and expanded functionality, and facilitates realization of VLSI and ULSI technologies. However, utilizing the third dimension to provide additional device layers poses thermal challenges due to the increased heat dissipation and complex electrical interconnects among different layers. The conflicting needs of the cooling system requiring larger flow passage dimensions to limit the pressure drop, and the IC architecture necessitating short interconnect distances to reduce signal latency warrant paradigm shifts in both of their design approach. Additional considerations include the effects due to temperature nonuniformity, localized hot spots, complex fluidic connections, and mechanical design. This paper reviews the advances in 3D IC cooling in the last decade and provides a vision for codesigning 3D IC architecture and integrated cooling systems. For heat fluxes of 50–100 W/cm2 on each side of a chip in a 3D IC package, the current single-phase cooling technology is projected to provide adequate cooling, albeit with high pressure drops. For future applications with coolant surface heat fluxes from 100 to 500 W/cm2, significant changes need to be made in both electrical and cooling technologies through a new level of codesign. Effectively mitigating the high temperatures surrounding local hot spots remains a challenging issue. The codesign approach with circuit, software and thermal designers working together is seen as essential. The through silicon vias (TSVs) in the current designs place a stringent limit on the channel height in the cooling layer. It is projected that integration of wireless network on chip architecture could alleviate these height restrictions since the data bandwidth is independent of the communication lengths. Microchannels that are 200 μm or larger in depth are expected to allow dissipation of large heat fluxes with significantly lower pressure drops.


2014 ◽  
Vol 1082 ◽  
pp. 344-347
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Rajendaran Vairavan ◽  
Hussin Kamarudin ◽  
Mukhzeer Mohamad Shahimin ◽  
...  

High power LEDs are currently being plagued by heat dissipation challenges due to its high power density thus limiting its further potential development and fulfillment. Exercising proper selection of packaging component could improve the life time of high power LED. In this work, the significance of the heat slug geometry on the heat dissipation of high power LED was addressed through simulation analysis. The heat slug geometries were varied in order to compare the heat dissipation of the high power LED. Ansys version 11 was utilized for the simulation. The heat dissipation of the high power LED was evaluated in terms of junction temperature, von Mises stress and thermal resistance. The key results of the analysis showed that a superior surface area is preferred for an enhanced heat dissipation of high power LED


2007 ◽  
Vol 129 (3) ◽  
pp. 291-299 ◽  
Author(s):  
Robert Wadell ◽  
Yogendra K. Joshi ◽  
Andrei G. Fedorov

Microprocessor performance can be significantly improved by lowering the junction temperature, especially down to the deep subambient levels. This provides the strong motivation for the current study, which focuses on the design and thermohydraulic performance evaluation of high heat flux evaporators suitable for interfacing the microprocessor chip with a cascaded R134a∕R508b vapor compression refrigeration system at −80°C. Four compact evaporator designs are examined—a base line slit-flow structure with no microfeatures, straight microchannels, an inline pin fin array, and an alternating pin fin array—all fitting the same size envelope. Pressure drop and heat transfer measurements are reported and discussed to explain the performance of the various evaporator geometries for heat fluxes ranging between 20W∕cm2 and 100W∕cm2.


Author(s):  
Tsutomu Saito ◽  
Hirohiko Kitsuki ◽  
Makoto Suzuki ◽  
Toshishige Yamada ◽  
Drazen Fabris ◽  
...  

We study reliability of carbon nanofibers (CNFs) under high-current stress by examining CNF breakdown on four different configurations, suspended or supported, with/without tungsten deposition. The suspended results are consistently explained with a heat transport model taking into account Joule heating and heat dissipation along the CNF, while supported cases show a consistently larger current density just before breakdown, reflecting effective heat dissipation to the substrate.


Author(s):  
Vishal Nagaraj ◽  
Saket Karajgikar ◽  
Dereje Agonafer ◽  
Senol Pekin

As there is continuous demand for miniaturization of electronic devices, flip chip technology is predominantly used for high density packaging. The technology offers several advantages like excellent electrical performance and better heat dissipation ability. Original invention of flip chip packaging utilized ceramic substrates and high lead bumps. Low cost commercialization of this packaging technology, however, required organic laminate substrates coupled with SnPb eutectic bumped interconnects on the die side. While organic laminate flip chip packaging may be a good option for many low power applications, current carrying capability of the eutectic bumped interconnect causes a catastrophic failure mechanism called electromigration. Previously, researchers have identified and addressed few issues regarding electromigration. Electomigration leads to the formation of metal voids in the conductors which eventually increases the resistance drop across the conductor causing electrical opens. Electromigration is very significant at high current densities. Temperature is the other parameter of concern for electromigration. High current density causes temperature to rise due to Joule heating, there by reducing the life of package. In order to determine the factors responsible for high current densities, we formed a full factorial design of experiments (DOE) that contained parameters such as passivation opening, UBM size, UBM thickness and trace width. Finite Element Analysis (FEA) was performed in order to study the effect of above parameters on current crowding and temperature in the bumped interconnects. Based on the results, hierarchy of the most important parameters to be considered while selecting the appropriate flip chip technology is proposed.


Sign in / Sign up

Export Citation Format

Share Document