scholarly journals A Study of Laser Micromachining of PM Processed Ti Compact for Dental Implants Applications

Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2246 ◽  
Author(s):  
Peter Šugár ◽  
Jaroslav Kováčik ◽  
Jana Šugárová ◽  
Barbora Ludrovcová

The paper deals with the experimental study of laser beam micromachining of the powder metallurgy processed Ti compacts applying the industrial grade fibre nanosecond laser operating at the wavelength of 1064 nm. The influence of the laser energy density on the surface roughness, surface morphology and surface elements composition was investigated and evaluated by means of surface roughness measurement, scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. The different laser treatment parameters resulted in the surfaces of very different characteristics of the newly developed biocompatible material prepared by advanced low temperature technology of hydride dehydride (HDH) titanium powder compactation. The results indicate that the laser pulse energy has remarkable effects on the machined surface characteristics which are discussed from the point of view of application in dental implantology.

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 378 ◽  
Author(s):  
Albena Daskalova ◽  
Irina Bliznakova ◽  
Liliya Angelova ◽  
Anton Trifonov ◽  
Heidi Declercq ◽  
...  

Surface functionalization introduced by precisely-defined surface structures depended on the surface texture and quality. Laser treatment is an advanced, non-contact technique for improving the biomaterials surface characteristics. In this study, femtosecond laser modification was applied to fabricate diverse structures on biodegradable polymer thin films and their ceramic blends. The influences of key laser processing parameters like laser energy and a number of applied laser pulses (N) over laser-treated surfaces were investigated. The modification of surface roughness was determined by atomic force microscopy (AFM). The surface roughness (Rrms) increased from approximately 0.5 to nearly 3 µm. The roughness changed with increasing laser energy and a number of applied laser pulses (N). The induced morphologies with different laser parameters were compared via Scanning electron microscopy (SEM) and confocal microscopy analysis. The chemical composition of exposed surfaces was examined by FTIR, X-ray photoelectron spectroscopy (XPS), and XRD analysis. This work illustrates the capacity of the laser microstructuring method for surface functionalization with possible applications in improvement of cellular attachment and orientation. Cells exhibited an extended shape along laser-modified surface zones compared to non-structured areas and demonstrated parallel alignment to the created structures. We examined laser-material interaction, microstructural outgrowth, and surface-treatment effect. By comparing the experimental results, it can be summarized that considerable processing quality can be obtained with femtosecond laser structuring.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2312 ◽  
Author(s):  
Peter Šugár ◽  
Barbora Ludrovcová ◽  
Jaroslav Kováčik ◽  
Martin Sahul ◽  
Jana Šugárová

Biocompatible materials with excellent mechanical properties as well as sophisticated surface morphology and chemistry are required to satisfy the requirements of modern dental implantology. In the study described in this article, an industrial-grade fibre nanosecond laser working at 1064 nm wavelength was used to micromachine a new type of a biocompatible material, Ti-graphite composite prepared by vacuum low-temperature extrusion of hydrogenated-dehydrogenated (HDH) titanium powder mixed with graphite flakes. The effect of the total laser energy delivered to the material per area on the machined surface morphology, roughness, surface element composition and phases transformations was investigated and evaluated by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), confocal laser-scanning microscopy (CLSM) and X-ray diffraction analysis (XRD). The findings illustrate that the amount of thermal energy put to the working material has a remarkable effect on the machined surface properties, which is discussed from the aspect of the contact properties of dental implants.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Malgorzata Matusiak ◽  
Vladimir Bajzik

AbstractThe surface characteristics of fabrics are important from the point of view of the sensorial comfort of clothing users. Surface friction and surface roughness are the most important surface parameters of fabrics. These parameters can be measured using different methods, the most important and well-accepted method being that using the Kawabata evaluation system (KES)-FB4 testing instrument. In this work, the surface roughness and surface friction of the seersucker woven fabric have been determined using the KES-FB4. However, the measurement procedure needs modification. On the basis of the results, the influence of the repeat of the seersucker effect and the linear density of the weft yarn on the surface parameters has been determined.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 859
Author(s):  
Ruslan Karimbaev ◽  
Seimi Choi ◽  
Young-Sik Pyun ◽  
Auezhan Amanov

This study introduces a newly developed cladding device, through printing AISI 1045 carbon steel as single and double layers onto American Society for Testing and Materials (ASTM) H13 tool steel plate. In this study, the mechanical and tribological characteristics of single and double layers were experimentally investigated. Both layers were polished first and then subjected to ultrasonic nanocrystal surface modification (UNSM) treatment to improve the mechanical and tribological characteristics. Surface roughness, surface hardness and depth profile measurements, and X-ray diffraction (XRD) analysis of the polished and UNSM-treated layers were carried out. After tribological tests, the wear tracks of both layers were characterized by scanning electron microscopy (SEM) along with energy-dispersive X-ray spectroscopy (EDX). The surface roughness (Ra and Rz) of the single and double UNSM-treated layers was reduced 74.6% and 85.9% compared to those of both the as-received layers, respectively. In addition, the surface hardness of the single and double layers was dramatically increased, by approximately 23.6% and 23.4% after UNSM treatment, respectively. There was no significant reduction in friction coefficient of both the UNSM-treated layers, but the wear resistance of the single and double UNSM-treated layers was enhanced by approximately 9.4% and 19.3% compared to the single and double polished layers, respectively. It can be concluded that UNSM treatment was capable of improving the mechanical and tribological characteristics of both layers. The newly developed cladding device can be used as an alternative additive manufacturing (AM) method, but efforts and upgrades need to progress in order to increase the productivity of the device and also improve the quality of the layers.


2016 ◽  
Vol 6 (4) ◽  
pp. 544-552 ◽  
Author(s):  
H. Godini ◽  
F. Hashemi ◽  
L. Mansuri ◽  
M. Sardar ◽  
Ghasem Hassani ◽  
...  

The present paper aims to investigate water purification of phenol by walnut green hull adsorbent. The surface characteristics of the adsorbent were studied using Fourier transform infra-red (FTIR), scanning electron microscope, and X-ray diffraction (XRD) techniques. The presence of functional groups such as hydroxyl and carbonyl onto walnut green hull surface was proved by FTIR analysis. Also quartz, cellulose and hematite were detected in the XRD analysis of samples by an X-ray diffractometer. The maximum sorption was achieved at pH 4.0. Data were evaluated for compliance with the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The results indicate that the data for adsorption of phenol onto walnut green hull fitted well with the Langmuir isotherm. The maximum adsorption capacity of the adsorbent was achieved by Langmuir isotherm 17.8 mg g–1. Also, the adsorption kinetics of phenol on the adsorbent were studied. The rates of sorption were found to conform to pseudo-second-order kinetics with good correlation.


2021 ◽  
Vol 24 (2) ◽  
pp. 9-12
Author(s):  
Zuzana Grešová ◽  
◽  
Peter Ižol ◽  
Ildikó Maňková ◽  
Marek Vrabe ◽  
...  

The article deals with the comparison and evaluation of finishing cutter path strategies when applied to one of the difficult to cut material such as Ti-alloy. The titanium alloy has been increasingly used for high performance application for oil and gas, aerospace, energy, medical and automotive industries. The importance of milling strategies outgoing from their impact on the economic aspects of production, realized using CNC machines. A planar sample was designed for the purposes of the experiment, enabling finishing cutter path strategies for shaped surfaces. Three cutting strategies were involved and compared- spiral, constant Z and line feed. For assessment of the effect of the cutting strategies three different feed rate were used. Comparison of simulated cutter path strategies and machined surface were visually inspected as well as measured surface roughness were evaluated. The constant Z cutting path strategy was found as suitable cutting strategy from point of view of surface roughness.


2014 ◽  
Vol 1054 ◽  
pp. 177-181 ◽  
Author(s):  
Jaroslav Pokorný ◽  
Jan Fořt ◽  
Milena Pavlíková ◽  
Jiří Studnička ◽  
Zbyšek Pavlík

Waste ceramic powder coming from grinding the ceramic bricks disposed on demolition depot is investigated as partial Portland cement replacement in blended binders. For the milled ceramic powder, measurement of specific surface area (SSA) and particles size distribution is done. Its chemical composition is accessed using X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) analysis. The blended binders containing ceramic powder in an amount of 8, 16, 24, 32, and 40% of mass of cement are used for the preparation of cement pastes which are then characterized using the measurement of basic physical properties, mechanical properties, hygric and thermal properties. The obtained results show that an application of 8 and 16% ceramic powder in the blended binder provides sufficient mechanical properties of the pastes with relatively low hygric transport properties. From the thermal performance point of view, the incorporation of ceramic powder decreases the heat transport in all the tested pastes. This makes good prerequisites for future research that will be focused on the development of new types of cement-based composites with incorporated ceramic waste powder.


2019 ◽  
Vol 10 ◽  
pp. 9-21 ◽  
Author(s):  
Florian Dumitrache ◽  
Iuliana P Morjan ◽  
Elena Dutu ◽  
Ion Morjan ◽  
Claudiu Teodor Fleaca ◽  
...  

Zn/F co-doped SnO2 nanoparticles with a mean diameter of less than 15 nm and a narrow size distribution were synthesized by a one-step laser pyrolysis technique using a reactive mixture containing tetramethyltin (SnMe4) and diethylzinc (ZnEt2) vapors, diluted Ar, O2 and SF6. Their structural, morphological, optical and electrical properties are reported in this work. The X-ray diffraction (XRD) analysis shows that the nanoparticles possess a tetragonal SnO2 crystalline structure. The main diffraction patterns of stannous fluoride (SnF2) were also identified and a reduction in intensity with increasing Zn percentage was evidenced. For the elemental composition estimation, energy dispersion X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) measurements were performed. In general, both analyses showed that the Zn percentage increases with increasing ZnEt2 flow, accompanied at the same time by a decrease in the amount of F in the nanopowders when the same SF6 flow was employed. The Raman spectra of the nanoparticles show the influence of both Zn and F content and crystallite size. The fluorine presence is due to the catalytic partial decomposition of the SF6 laser energy transfer agent. In direct correlation with the increase in the Zn doping level, the bandgap of co-doped nanoparticles shifts to lower energy (from 3.55 to 2.88 eV for the highest Zn dopant concentration).


2010 ◽  
Vol 135 ◽  
pp. 303-308
Author(s):  
Feng Jiao ◽  
Bo Zhao ◽  
Xiang Liu

The surface roughness of machined surface is one of the important indicators to evaluate the workpiece machining quality. In order to clarify the change law of surface roughness in ultrasonic aided high-speed lapping with solid diamond abrasive, a series of ultrasonic and conventional lapping experiments of different engineering ceramics, such as Al2O3, ZrO2 and ZTA, were carried out on precision lathe with self-made high-speed ultrasonic lapping device. The research results show that the value of surface roughness in ultrasonic aided lapping is lower than that in conventional lapping. With the assistance of ultrasonic vibration, the surface quality can be improved obviously. In ultrasonic aided lapping, there is an optimum lapping pressure from which a better surface roughness value can be obtained. Because of different physical and mechanical properties, material removal mechanisms of the three kinds of engineering ceramics present different characteristics, which lead to the different surface roughness even though under the same lapping conditions. The research of the paper is helpful to optimize lapping technique and improve the surface quality.


Author(s):  
Himanshu Bisaria ◽  
Pragya Shandilya

Owing to the increasing demand for Ni-rich shape memory alloys in various sectors such as biomedical, aerospace, and robotics, the efficient machining of shape memory alloys is vital for their productive exploitation. The aim of this experimental investigation is to explore the influence of wire electric discharge machining process parameters such as spark gap voltage, wire tension, spark off time, wire speed, and spark on time, on the cutting efficiency and surface roughness of Ni50.89Ti49.11 SMA using one factor at a time approach. The results reveal that cutting efficiency and surface roughness are strongly influenced by spark off time, spark on time, and spark gap voltage, whereas wire speed and wire tension have the inconsequential effect. The presence of many microcracks, craters, voids, bulges of debris, and the re-solidified layer of molten material on the machined surface have been detected in scanning electron micrographs. The results of phase analysis using energy-dispersive X-ray spectroscopy and X-ray diffraction divulge the migration of foreign elements from the brass wire and dielectric to the machined surface. Due to the formation of recast layer and various oxides, the hardening effect near the machined surface was also observed. The hardness near the machined surface has been increased several times in comparison to bulk hardness.


Sign in / Sign up

Export Citation Format

Share Document