scholarly journals Stribeck Curve of Magnetorheological Fluid within Pin-on-Disc Configuration: An Experimental Investigation

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4670
Author(s):  
Jakub Roupec ◽  
Filip Jeniš ◽  
Zbyněk Strecker ◽  
Michal Kubík ◽  
Ondřej Macháček

The paper focuses on the coefficient of friction (COF) of a magnetorheological fluid (MRF) in the wide range of working conditions across all the lubrication regimes—boundary, mixed, elastohydrodynamic (EHD), and hydrodynamic (HD) lubrication, specifically focused on the common working area of MR damper. The coefficient of friction was measured for MR fluids from Lord company with concentrations of 22, 32, and 40 vol. % of iron particles at temperatures 40 and 80 °C. The results were compared with a reference fluid, a synthetic liquid hydrocarbon PAO4 used as a carrier fluid of MRF. The results show that at boundary regime and temperature 40 °C all the fluids exhibit similar COF of 0.11–0.13. Differences can be found in the EHD regime, where the MR fluid COF is significantly higher (0.08) in comparison with PAO4 (0.04). The COF of MR fluid in the HD regime rose very steeply in comparison with PAO4. The effect of particle concentration is significant in the HD regime.

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


Author(s):  
Marc Brandl ◽  
Friedrich Pfeiffer

Abstract This paper deals with the measurement of dry friction. A tribometer was developed in order to identify both the sticking and the sliding coefficient of friction. The aim was to determine the so called Stribeck-curve of any material in contact. The design of the plant is presented. Avoiding errors in recalculating the coefficient of friction, a detailed model of the plant as a multi body system with motor feedback was generated. Advantages of the tribometer are shown in simulations. Some results of measurements in comparison with simulation results are presented.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1522 ◽  
Author(s):  
Ningning Hu ◽  
Xiuheng Zhang ◽  
Xianghui Wang ◽  
Na Wu ◽  
Songquan Wang

In the present work, the relationship curve of the coefficient of friction (COF) with varying loads of different morphology WS2 lubricating additives in the friction process at various sliding speeds was studied. On this basis, wear marks and elements on the wear surfaces after friction were analyzed, and then the anti-wear and mechanism effects of WS2 of different forms in the lubrication process were discussed. Meanwhile, the Stribeck curve was used to study the lubrication state of the lubricating oil in the friction process. It was revealed that the COF of lubricating oil containing lamellar WS2 decreased by 29.35% at optimum condition and the minimum COF was concentrated at around 100 N. The COF of lubricating oil containing spherical WS2 decreased by 30.24% and the minimum coefficient was concentrated at 120 N. The extreme pressure property of spherical WS2 was better than that of lamellar WS2, and the wear resistance of spherical WS2 was more stable when the load was over 80 N. The different morphology of WS2 additives can play anti-wear and anti-friction roles within a wide range of sliding speeds.


2014 ◽  
Vol 13 (02) ◽  
pp. 1450009 ◽  
Author(s):  
Shreedhar Kolekar

The present paper focuses on preparation and process of the magnetorheological (MR) fluid whose carrier fluid is silicone-based oil and its additive is the commercial grease with different concentration of iron particles. General properties of MR fluid are discussed and rheological properties like shear rate, shear stress, viscosity of MR fluid can be found by using cone-and-plate sensor system-type rheometer. The result shows that shear stress as a function of magnetic flux density and viscosity does not strictly scale with iron loading.


2021 ◽  
Author(s):  
Joseba Cillaurren ◽  
Lander Galdos ◽  
Mario Sanchez ◽  
Alaitz Zabala ◽  
Eneko Saenz de Argandoña ◽  
...  

In the last few years many efforts have been carried out in order to better understand what the real contact between material and tools is. Based on the better understanding new friction models have been developed which have allowed process designers to improve numerical results in terms of component viability and geometrical accuracy. The new models define the coefficient of friction depending on different process parameters such as the contact pressure, the sliding velocity, the material strain, and the tool temperature. Many examples of the improvements achieved, both at laboratory scale and at industrial scale, can be found in the recent literature. However, in each of the examples found in the literature, different ranges of the variables affecting the coefficient of friction are covered depending on the component analysed and the material used to produce such component. The present work statistically analyses the contact pressure and sliding velocity ranges achieved during numerical simulation (FEM) of sheet metal forming processes. Nineteen different industrial components representing a high variety of shapes have been studied to cover a wide range of casuistic. The contact pressure and sliding velocity corresponding to typical areas of the tooling have been analysed though numerical simulation in each case. This study identifies the ranges of contact-pressure and sliding velocities occurring in sheet metal forming aimed to set the characterization range for future friction studies.


Author(s):  
Caitlin Moore ◽  
Kurt Beschorner ◽  
Pradeep L. Menezes ◽  
Michael R. Lovell

Slip and fall accidents cost billions of dollars each year. Shoe-floor-lubricant friction has been shown to follow the Stribeck effect, operating primarily in the boundary and mixed-lubrication regimes. Two of the most important factors believed to significantly contribute to shoe-floor-lubricant friction in the boundary lubrication regime are adhesion and ploughing. Experiments were conducted using a pin-on-disk tribometer to quantify adhesion and ploughing contributions to shoe-floor friction in dry and lubricated conditions. The coefficient of friction between three shoe materials and two floor materials of different hardness and roughness were considered. Experiments were conducted under six lubricants for a sliding speed of 0.01 m/sec at ambient conditions. It was found that the contribution of adhesion and ploughing to shoe-floor-lubricant friction was significantly affected by material hardness, roughness, and lubricant properties. Material hardness and roughness are known to affect adhesion, with increased hardness or increased roughness typically resulting in decreased adhesion. The smoothest shoe material, while also being the hardest, resulted in the greatest adhesional contribution to friction. The roughest material, while also being the softest, resulted in the lowest adhesional contributions under dry conditions. Canola oil consistently resulted in the lowest percent of full adhesion and water consistently resulted in the highest percent of full adhesion, presumably due to the thickness, of the boundary lubrication layer. Ploughing contribution was dependent upon the hardness of the shoe and floor materials. A positive correlation was found between the shoe and floor hardness ratio and ploughing coefficient of friction.


Author(s):  
Y Holovenko ◽  
M Antonov ◽  
L Kollo ◽  
I Hussainova

In recent years, 3D scanning and printing of plastics has rapidly matured while printing of metallic parts is only gaining popularity due to required refinements of technology combined with cost- and resources effectiveness for the main components of printers and consumables. The 3D printing allows producing complicated shapes that can be hardly produced by conventional mechanical tools and can provide the functionalization of surfaces. In this work, several different stainless steel (AISI 316 L) surface patterns (flat, gecko’s fibrils, dimples, pyramids, mushrooms, mesh, brush, inclined brush) intended for controlling the coefficient of friction were printed with the help of a 3D metal printer by selective laser melting technique. Unidirectional sliding tests were performed with pin-on-disc configuration. Sliding velocity of 5 × 10−3 m/s and continuously increasing load ranged from 5 to 103 N has been applied in the course of “scanning” mode and accompanied by simultaneous recording of the coefficient of friction. A stainless steel (AISI 316) disc counterbody was used in this series of the tests. It was found that the 3D printed structures allow to control the value and stability of the coefficient of friction in a wide range of loads. Microstructural analysis of the worn samples was performed to support the conclusions regarding wear mechanism.


1991 ◽  
Vol 64 (1) ◽  
pp. 108-117 ◽  
Author(s):  
C. W. Extrand ◽  
A. N. Gent ◽  
S. Y. Kaang

Abstract The contact width, and hence contact area, for an elastic wedge pressed against a rigid flat surface appears to be proportional to the applied load per unit length. For a particular rubber sample, the reciprocal of the constant of proportionality, i.e., the mean normal pressure, was 130 kPa, i.e., about 7% of the tensile modulus E of the material. It was also independent of sliding speed over the range examined. Thus, a sharp wedge gave a relatively high loading pressure, independent of the applied load. As a result, the coefficient of friction was also independent of applied load over a wide range. The coefficient of friction was measured for a wedge of an unfilled natural rubber vulcanizate over wide ranges of sliding speed (50 µm/s to 100 mm/s) and test temperature (3°C to 63°C). It was found to increase with sliding speed and decrease with temperature over these ranges. The results at different temperatures were superposable using the WLF rate-temperature equivalence to create a master curve of friction vs. reduced sliding speed, rising from a value of about 1.5 at high temperatures and low speeds to about 5 at low temperatures and high speeds. Chlorination of a thin surface region reduced the coefficient of friction and its dependence on speed and temperature. It then became similar to that typically found for thermoplastics, 0.4 to 0.7. The geometry of sliding a flexible strip against a rigid curved surface caused high values of the apparent coefficient of friction to be obtained at relatively small departures from normal loading. In an extreme case, frictional seizure was observed when a high-friction sample contacted the glass surface at an angle of about 15° to the direction of loading. The apparent coefficient of friction then became indefinitely large. This same phenomenon of abnormally large frictional effects would be expected to occur in the case of conventional windshield-wiper blades, sliding over curved glass windshields.


2021 ◽  
Vol 7 ◽  
Author(s):  
Fabian Wolfsperger ◽  
Frédéric Meyer ◽  
Matthias Gilgien

Previous research has shown that friction between ski and snow can vary substantially due to changes in snow conditions. The variation of friction affects the speed a freestyle skier or snowboarder (athlete) reaches during the in-run of a jump. Athletes risk severe injuries if their take-off speed is not within the right margin to land in the “sweet spot” zone. To reduce the risk of injury, snow park designers and competition managers need to calculate the speed athletes reach during the in-run. However, despite multiple attempts over the last decades, to date no model can predict ski-snow friction from snow physical quantities. Hence, simulations of in-run speeds suffer from insufficient validity. For the first time, this work combines kinematic athlete data and comprehensive snow surface measurements to infer the coefficient of friction of freestyle skis and snowboards across a wide range of snow conditions. Athletes’ point mass kinematics were recorded at more than 200 straight gliding runs with differential global navigation satellite systems. The subjects’ air drag and lift were deployed from wind tunnel measurements. Along with the kinematic data and data from wind measurements, a mechanical model of the athlete was established to solve the equation of motion for the coefficient of friction between ski/snowboard and snow. The friction coefficients for ski (snowboard) ranged from 0.023 ± 0.006 (0.026 ± 0.008) to 0.139 ± 0.018 (0.143 ± 0.017) and could be explained well (Radj2 = 0.77) from the measured snow parameters using a multivariate statistical model. Our results provide a new quantitative tool for practitioners to predict the friction of skis and snowboard on snow of various conditions, which aims to increase athletes’ safety in slopestyle and big air.


2003 ◽  
Vol 767 ◽  
Author(s):  
Ara Philipossian ◽  
Scott Olsen

AbstractReal-time coefficient of friction (COF) analysis is used to determine the extent of normal and shear forces during CMP and identify the lubrication regimes associated with the process. Pads with different surface textures and slurries with varying abrasive concentrations are used to polish ILD films over a wide range of operating parameters. Results show that by varying abrasive concentration and pad surface texture, one can cause the process tribology to change from ‘boundary lubrication’ to ‘partial lubrication’, to ‘hydrodynamic lubrication’. A two-phase model relating average coefficient of friction and Preston's constant is presented. At abrasive concentrations up to 9 percent, material removal is proportional to the extent of contact between the abrasives and the wafer. At abrasive concentrations between 9 to 25 percent, removal rate is directly influenced by average COF. A new parameter termed the ‘tribological mechanism indicator’ is defined and extracted from the data, which coupled with the information on COF and ILD removal rate, results in a series of ‘universal’ correlations. A qualitative model based on pad storage modulus is used to explain the trends.


Sign in / Sign up

Export Citation Format

Share Document