scholarly journals Influence of Additive Firing on the Surface Characteristics, Streptococcus mutans Viability and Optical Properties of Zirconia

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1286
Author(s):  
Wonjoon Moon ◽  
Joo Hyang Park ◽  
Han-Ah Lee ◽  
Bum-Soon Lim ◽  
Shin Hye Chung

The purpose of this study was to observe whether the repetitive firing of dental zirconia caused changes in surface characteristics, S. mutans viability, and optical properties of zirconia. Dental zirconia blocks were sintered and randomly distributed into seven experimental groups: F0–F6. Except for F0, which only went through sintering, the additive firing was performed in order for F1–F6. Surface roughness, contact angle, S. mutans viability by fluorescence, and translucency parameter were measured. They were all highest after sintering (F0) and decreased after additive firings (F1–F6). The additive firing of zirconia after sintering decreased surface roughness, contact angle, S. mutans viability, and translucency. The number of firings after the first firing was not found to be critical in surface characteristics, S. mutans viability, and optical property. Changes in surface characteristics might have led to a decrease in S. mutans viability, while the change of translucency was not clinically significant. This implies that additive firing may prevent secondary caries under zirconia restorations, not compromising esthetic appearance.

2021 ◽  
Vol 8 (2) ◽  
pp. 106
Author(s):  
Adella Syvia Maharani ◽  
Pramudya Aditama ◽  
Murti Indrastuti ◽  
Suparyono Saleh

ABSTRACTBackground: Acrylic resin artificial teeth is easily to have bacterial adhesion. It is necessary to perform a treatment on that surface, in order to reduce bacterial adhesion. This study aimed to reveal the effect of silica coating in acrylic resin artificial teeth on surface roughness, contact angle measurement, and the growth of Streptococcus mutans.Method: The study was conducted on two groups (n=16) of disk-shaped acrylic resin artificial teeth with a diameter of 10 mm and thickness of 2 mm. A 2% silica coating material was obtained by diluting 2 g silica nanoparticles on 100 ml of ethanol. Surface roughness, contact angle measurement, and the growth of Streptococcus mutans was measured using surface roughness measuring instrument, camera digital, and colony counter. The data obtained were then analyzed using T-test (p<0.05).Result: The results showed that the surface roughness and contact angle measurement in group I (0.29±0.08 μm); (79,49º ± 10,88º) was higher than group II (0.17±0.05 μm); (34,77º±0,05º). The growth of Streptococcus mutans in group I was also higher (32.28±3.75 CFU/ml) than group II (24.83±3.47 CFU/ml). Conclusion: The study concluded that there is an effect of silica coating on surface roughness, contact angle measurement, and the growth of Streptococcus mutans in acrylic resin artificial teeth.


2005 ◽  
Vol 18 (18) ◽  
pp. 3796-3805 ◽  
Author(s):  
Michael Winton

Abstract A technique is developed for diagnosing effective surface and atmospheric optical properties from climate model shortwave flux diagnostics. These properties can be used to distinguish the contributions of surface and atmospheric optical property changes to shortwave flux changes at the surface and top of the atmosphere. In addition to the four standard shortwave flux diagnostics (upward, downward, surface, and top of atmosphere), the technique makes use of surface-down and top-up fluxes over a zero-albedo surface obtained from an auxiliary online shortwave calculation. The simple model optical properties, when constructed from the time-mean fluxes, are effective optical properties, useful for predicting the time-mean response to optical property changes. The technique is tested against auxiliary online shortwave calculations at four validation albedos and shown to predict the monthly mean surface absorption with an rms error of less than 2% over the globe. The reasons for the accuracy of the technique are explored. Less accurate techniques that make use of existing shortwave diagnostics are presented and compared.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1057
Author(s):  
Yu-Ting Jhong ◽  
Chih-Yeh Chao ◽  
Wei-Chun Hung ◽  
Je-Kang Du

Ti-6Al-4V, although widely used in dental materials, causes peri-implant inflammation due to the long-term accumulation of bacteria around the implant, resulting in bone loss and eventual failure of the implant. This study aims to overcome the problem of dental implant infection by analyzing the influence of Ti-6Al-4V surface characteristics on the quantity of accumulated bacteria. Ti-6Al-4V specimens, each with different surface roughness are produced by mechanical, chemical, and electrolytic polishing. The surface roughness, surface contact angle, surface oxygen content, and surface structure were measured via atomic force microscopy (AFM), laser scanning confocal microscopy (LSCM), drop shape analysis (using sessile drop), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD). The micro and macro surface roughness are 10.33–120.05 nm and 0.68–2.34 μm, respectively. The surface X direction and Y direction contact angle are 21.38°–96.44° and 18.37°–92.72°, respectively. The surface oxygen content is 47.36–59.89 at.%. The number of colonies and the optical density (OD) are 7.87 × 106–17.73 × 106 CFU/mL and 0.189–0.245, respectively. The bacterial inhibition were the most effective under the electrolytic polishing of Ti-6Al-4V. The electrolytic polishing of Ti-6Al-4V exhibited the best surface characteristics: the surface roughness of 10 nm, surface contact angle of 92°, and surface oxygen content of 54 at.%, respectively. This provides the best surface treatment of Ti-6Al-4V in dental implants.


Author(s):  
Halar Memon ◽  
Kiana Mirshahidi ◽  
Kamran Alasvand Zarasvand ◽  
Kevin Golovin ◽  
Davide S. A. De Focatiis ◽  
...  

AbstractA comparative study of de-icing evaluation methods was conducted in this work, and their variations in response to surface characteristics were investigated. The mechanical de-icing measurements include centrifugal, push, and tensile methods. The centrifugal and the horizontal push (shear) methods suggested a linear relationship of ice adhesion strength with surface roughness, whereas the tensile (normal) method indicated an inverse curvilinear relationship with contact angle hysteresis. A partial correlation of contact angle hysteresis on the shear-based methods was also indicated over a specified range of surface roughness. Further attempts were also made on 1H,1H,2H,2H-perfluorooctyltriethoxysilane-coated surfaces, and the ice adhesion indicated a clear reduction in the normal de-icing method, whereas the shear-based methods did not show a considerable change in ice adhesion, highlighting their mechanical forces-centric response. Lastly, a further evaluation using a hybrid de-icing method was conducted, to verify the influence of surface characteristics on ice removal involving heating, which demonstrated a partial correlation of energy consumption with the ice adhesion strength over a specified range of surface roughness. The results obtained in this study provide crucial information on the influence of surface characteristics on ice adhesion and offer material-dependent correlations of the popular de-icing evaluation methods. The conclusions could be applied to define an appropriate testing method for the evaluation of icephobic surfaces and coatings. Graphical abstract


2015 ◽  
Vol 719-720 ◽  
pp. 29-37 ◽  
Author(s):  
Maral Rahimi ◽  
Peter Fojan ◽  
Leonid Gurevich ◽  
Alireza Afshari

Aluminium alloys are the predominant materials in modern industries. Increased knowledge about the surface characteristics of bare aluminium can enhance the understanding about how to optimize the working conditions for the equipment involving aluminium parts. This work focusses on the properties of native surface of aluminium alloy 8011, which is the main construction material for the production of air-to-air heat exchanger fins. In this study, we address its water wettability, surface roughness and frost formation in different psychometric parameters. The contact angle measurements revealed that this aluminium alloy exhibits a relatively high contact angle of about 78 degree, i.e. is not wetted completely. AFM measurements revealed significant surface roughness of typical heat exchanger fins. The thickness of formed frost was studied in relation to the wettability, humidity and the cold surface temperature.


1993 ◽  
Vol 20 (4) ◽  
pp. 297-305 ◽  
Author(s):  
C. O'Kane ◽  
R. G. Oliver ◽  
R. E. Blunden

Surface characteristics that are considered important for bacterial attachment to thirteen orthodontic bonding composite cements and one glass ionomer cement were examined in vitro before and after toothbrush abrasion. The surface roughness and contact angle measurements were found to be statistically significantly different between the materials, both before and after brushing, and there were also statistically significant changes within materials after brushing. There were low correlation coefficients between surface roughness and contact angle for both pre-and post-brushed materials.


Author(s):  
Masahisa Asada ◽  
Masaki Sakata ◽  
Takeshi Shiono ◽  
Yuka Takai ◽  
Akihiko Goto ◽  
...  

Kyo-gawara is one of traditional crafts, one of Japanese roof tile made in Kyoto by using traditional techniques. The characteristics of Kyo-gawara is gloss on surface available in “Migaki” process. Migaki process is that craftsman strokes half-dry surface with paddle one by one. Number of products that a craftsman has to finish the process is decided. In previous study, investigation about the relationship between number of times of Migaki process and surface properties of Kyo-gawara cannot be seen [1]. In this study, specimens having different number of time of Migaki process (none, once, twice) were used, surface structure and properties were analyzed, and investigation about the relationship between Migaki process and surface characteristics was performed. Measurement items are surface roughness (Ra), contact angle, water absorption. As a result, surface roughness tended to decrease, and with increase of number of times of Migaki process. From the result of measurement of contact angle and water absorption, it was clarified that Migaki could improve waterproofness.


2016 ◽  
Vol 87 (3) ◽  
pp. 448-454 ◽  
Author(s):  
Kirubaharan S. Abraham ◽  
Nithya Jagdish ◽  
Vignesh Kailasam ◽  
Sridevi Padmanabhan

ABSTRACT Objectives: To compare the adhesion of Streptococcus mutans to nickel titanium (NiTi) and copper-NiTi (Cu-NiTi) archwires and to correlate the adhesion to surface characteristics (surface free energy and surface roughness) of these wires. Materials and Methods: A total of 16 patients undergoing orthodontic treatment with preadjusted edgewise appliances were included in the study. 0.016” and 0.016” × 0.022” NiTi and Cu-NiTi archwires in as-received condition and after 4 weeks of intraoral use were studied for S mutans adhesion using real-time polymerase chain reaction. Surface roughness and surface free energy were studied by three-dimensional surface profilometry and dynamic contact angle analysis, respectively. Results: S mutans adhesion was more in Cu-NiTi archwires. These wires exhibited rougher surface and higher surface free energy when compared to NiTi archwires. Conclusions: S mutans adhesion, surface roughness, and surface free energy were greater in Cu-NiTi than NiTi archwires. Surface roughness and surface free energy increased after 4 weeks of intraoral exposure for all of the archwires studied. A predominantly negative correlation was seen between the cycle threshold value of adherent bacteria and surface characteristics.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7648-7659
Author(s):  
Ümit Büyüksarı ◽  
Hüseyin Akkılıç

Surface characteristics were studied for particleboards produced from hydro-thermally treated (HTT) and non-treated (NT) wheat stalk (WS). Wood and wheat stalk particles were used as experimental materials. The wheat stalk particles were subjected to HTT at a temperature of 180 °C for 8 minutes in a steam explosion machine. HTT and NT WS particles were added at 10%, 20%, 30%, and 40% to the wood particles. The surface roughness and wettability of the produced panels were determined. The roughness measurements, average roughness (Ra), maximum roughness (Rmax), and mean peak-to-valley height (Rz) were performed using a fine stylus tracing technique. The wetting behavior of the panels was characterized by the contact angle method (goniometer technique). The contact angle (CA) measurements were obtained by using a KSV Cam-101 Scientific Instrument connected with a digital camera and computer system. Statistical analyses showed significant differences in the surface roughness and wettability of the particleboards following hydro-thermal modification. The addition of WS to the panels significantly decreased the roughness values. However, all of the HTT groups exhibited higher roughness compared to NT groups. The CA values decreased when the WS content increased. The wettability of the particleboard containing HTT WS particles was improved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sirapat Pipattanachat ◽  
Jiaqian Qin ◽  
Dinesh Rokaya ◽  
Panida Thanyasrisung ◽  
Viritpon Srimaneepong

AbstractBiofilm formation on medical devices can induce complications. Graphene oxide/silver nanoparticles (GO/AgNPs) coated nickel-titanium (NiTi) alloy has been successfully produced. Therefore, the aim of this study was to determine the anti-bacterial and anti-biofilm effects of a GO/AgNPs coated NiTi alloy prepared by Electrophoretic deposition (EPD). GO/AgNPs were coated on NiTi alloy using various coating times. The surface characteristics of the coated NiTi alloy substrates were investigated and its anti-biofilm and anti-bacterial effect on Streptococcus mutans biofilm were determined by measuring the biofilm mass and the number of viable cells using a crystal violet assay and colony counting assay, respectively. The results showed that although the surface roughness increased in a coating time-dependent manner, there was no positive correlation between the surface roughness and the total biofilm mass. However, increased GO/AgNPs deposition produced by the increased coating time significantly reduced the number of viable bacteria in the biofilm (p < 0.05). Therefore, the GO/AgNPs on NiTi alloy have an antibacterial effect on the S. mutans biofilm. However, the increased surface roughness does not influence total biofilm mass formation (p = 0.993). Modifying the NiTi alloy surface using GO/AgNPs can be a promising coating to reduce the consequences of biofilm formation.


Sign in / Sign up

Export Citation Format

Share Document