scholarly journals The Relation between Concrete, Mortar and Paste Scale Early Age Properties

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1569
Author(s):  
Martin Klun ◽  
Vlatko Bosiljkov ◽  
Violeta Bokan-Bosiljkov

Microstructure development of concrete, mortar, and paste scale of cement-based material (CBM) during the early hydration stage has a significant impact on CBM’s physical, mechanical, and durability characteristics at the high maturity state. The research was carried out using compositions with increased autogenous shrinkage and extended early age period, proposed within the RRT+ programme of the COST Action TU1404. The electrical conductivity method, used to follow the solidification process of CBM, is capable of determining the initial and final setting time, and the end of the solidification process acceleration stage for the paste and mortar scale. Simultaneous ultrasonic P- and S-wave transmission measurements revealed that the ratio of velocities VP/VS is highly dependent on the presence of aggregates—it is considerably higher for the paste scale compared to the mortar and concrete scale. The deviation from the otherwise roughly constant ratio VP/VS for each scale may indicate cracks in the material. The non-linear correlation between the dynamic and static elastic moduli valid over the three scales was confirmed. Additionally, it was found that the static E-modulus correlates very well with the square of the VS and that the VS is highly correlated to the cube compressive strength—but a separate trendline exists for each CBM scale.

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2489 ◽  
Author(s):  
Yu Zheng ◽  
Dongdong Chen ◽  
Lingzhu Zhou ◽  
Linsheng Huo ◽  
Hongwei Ma ◽  
...  

Nowadays, the industrial waste, Fly Ash (FA), as a mineral admixture or a replacement of cement for the production of self-compacting concrete (SCC) has been increasingly used, because of its benefits in enhancing both fresh and long-term concrete properties and in promoting environmental-friendly construction. In this study, the conventional cement was replaced by FA at different rates (0%, 20%, 40%, 60% of the cement mass) for the SCC mixtures. The early-age (0–24 h) SCC hydration, which is a complicated chemical reaction in pozzolanic behavior, was characterized by using a pair of piezoceramic Smart Aggregates (SAs). One SA works as an actuator and the other works as a sensor. A sweep sine signal from 100 Hz to100 kHz was used as the excitation signal, which is helpful to understand the quantitative influence of fly ash on the kinetics of SCC hydration. During the hydration reaction, the received electrical signal was continuously detected by the sensor. The experimental results showed that increasing the volume of fly ash resulted in longer pozzolanic reaction time in SCCs, which successfully reveals the effect of fly ash volume on the hydration behavior in early age (0–24 h) hydration. In order to quantitatively evaluate the hydration in the 0–24 h, based on the wavelet packet energy analysis, the hydration completion index (HCI) and normalized hydration completion index (NHCI) were defined. The experimental results showed that the NHCI can clearly reveal the hydration completion progress during the early hydration age (0–24 h). To validate the accuracy of the test results based on SAs, a series of mechanical tests for penetration resistance of SCCs with different volumes of fly ash were carried out. The results predicted by the signal based on SAs gave reasonable agreement with the test results of penetration resistance. It can be concluded that a successful investigation of the influence of fly ash on early-age SCC hydration response can be achieved based on the analysis of the received electrical signal using the proposed method and the important hydration characteristics, such as initial and final setting time, and can be approximately predicted by NHCI values.


Author(s):  
Natalia Pires Martins ◽  
Burhan Cicek ◽  
Coralie Brumaud ◽  
Guillaume Habert

The fast precipitation of ettringite in conventional Calcium Sulfo Aluminate (CSA) cement causes rapid stiffening of the cement paste and is directly associated with short setting times and self-desiccation. To extend the time during which those types of cement remain workable, retarding admixtures can be used. However, retarders may affect the amounts and types of hydration products formed and as a consequence the ability of hydrated cement to chemically bind water. This work investigates the influence of two natural-based admixtures on the self-desiccation ability of a vernacular CSA ternary binder used as earth stabilization. Vicat measurements were used to study the efficiency of citric acid and sucrose as retarding admixtures on the setting time of stabilized earth. A quantitative study of the self-desiccation ability of the binder was performed on dried binder pastes using thermogravimetric analysis (TGA). Results show that both admixtures have a significant impact on the setting time of the binder. Furthermore, TGA showed that the self-desiccation ability of this vernacular CSA binder is significantly reduced when citric acid at high dosages is used, both at early hydration and after 14 days. On the contrary, the use of sucrose does not affect the water chemically bound at an early age but can maximize bound water after 14 days of hydration.


2021 ◽  
Vol 10 (1) ◽  
pp. 1374-1382
Author(s):  
Wei He ◽  
Gang Liao

Abstract Nano calcium silicate hydrate (nano-C–S–H) has become a novel additive for advanced cement-based materials. In this paper, the effect of nano-C–S–H on the early-age performance of cement paste has been studied, and some micro-characterization methods were used to measure the microstructure of nano-C–S–H-modified cement-based material. The results showed that the initial fluidity of cement paste was improved after addition of nano-C–S–H, but the fluidity gradual loss increased with the dosage of nano-C–S–H. The autogenous shrinkage of cement paste can be reduced by up to 42% maximum at an appropriate addition of nano-C–S–H. The mechanical property of cement paste was enhanced noticeably after adding nano-C–S–H, namely, the compressive strengths were improved by 52% and 47.74% at age of 1 day and 7 days, respectively. More hydration products were observed and pore diameter of cement matrix was refined after adding nano-C–S–H, indicating that the early hydration process of cement was accelerated by nano-C–S–H. This was mainly attributed to seed effect of nano-C–S–H. The detailed relationship between microstructure and early-age performance was also discussed.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 731
Author(s):  
Chunlong Huang ◽  
Zirui Cheng ◽  
Jihui Zhao ◽  
Yiren Wang ◽  
Jie Pang

The ferrite aluminate cement (FAC) could rapidly lose fluidity or workability due to its excessive hydration rate, and greatly reduce the construction performance. Chemical admixtures are commonly used to provide the workability of cement-based materials. In this study, to ensure required fluidity of FAC, chemically different water reducing agents are incorporated into the FAC pastes. The experiments are performed with aliphatic water reducing agent (AP), polycarboxylic acid water reducing agent (PC) and melamine water reducing agent (MA), respectively. Influence of the water reducing agents on fluidity, setting time, hydration process, hydration product and zeta potential of the fresh cement pastes is investigated. The results show that PC has a better dispersion capacity compared to AP and MA. Besides decreasing water dosage, PC also acts as a retarder, significantly increasing the setting times, delaying the hydration rate and leading to less ettringite in the hydration process of FAC particles. The water reducing agents molecules are adsorbed on the surface of positively charged minerals and hydration products, however, for PC, steric hindrance from the long side chain of PC plays a critical role in dispersing cement particles, whereas AP and MA acting through an electrostatic repulsion force.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1109
Author(s):  
Mati Ullah Shah ◽  
Muhammad Usman ◽  
Muhammad Usman Hanif ◽  
Iqra Naseem ◽  
Sara Farooq

The huge amount of solid waste from the brick manufacturing industry can be used as a cement replacement. However, replacement exceeding 10% causes a reduction in strength due to the slowing of the pozzolanic reaction. Therefore, in this study, the pozzolanic potential of brick waste is enhanced using ultrafine brick powder with hydrated lime (HL). A total of six self-compacting paste mixes were studied. HL 2.5% by weight of binder was added in two formulations: 10% and 20% of waste burnt brick powder (WBBP), to activate the pozzolanic reaction. An increase in the water demand and setting time was observed by increasing the replacement percentage of WBBP. It was found that the mechanical properties of mixes containing 5% and 10% WBBP performed better than the control mix, while the mechanical properties of the mixes containing 20% WBBP were found to be almost equal to the control mix at 90 days. The addition of HL enhanced the early-age strength. Furthermore, WBBP formulations endorsed improvements in both durability and rheological properties, complemented by reduced early-age shrinkage. Overall, it was found that brick waste in ultrafine size has a very high degree of pozzolanic potential and can be effectively utilized as a supplementary cementitious material.


2009 ◽  
Vol 419-420 ◽  
pp. 1-4 ◽  
Author(s):  
Ying Wei Yun ◽  
Ii Young Jang ◽  
Seong Kyum Kim ◽  
Seung Min Park

High-performance concrete (HPC) as a promising construction material has been widely used in infrastructures and high-rise buildings etc. However, its pretty high autogenous shrinkage (AS) especially in its early age becomes one of the key problems endangering long-time durability of HPC structures. This paper carried out the early age AS research of large scaled HPC column specimens by embedded Fiber Bragg-Grating (FBG) strain sensor. Temperature compensation for FBG strain sensor by thermocouple was also attempted in this paper, and the results were reasonable and acceptable comparing with the result compensated by FBG temperature sensor. Reinforcement influence, size effect and temperature effect on HPC AS were also analyzed respectively in this paper.


2014 ◽  
pp. 663-667
Author(s):  
Jun-ichi Arai ◽  
Takahiro Ajichi ◽  
Toshiaki Mizobuchi

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5871
Author(s):  
Jinming Liu ◽  
Boyu Ju ◽  
Wei Xie ◽  
Huang Yu ◽  
Haiying Xiao ◽  
...  

In this paper, an ultrahigh-strength marine concrete containing coral aggregates is developed. Concrete fabricated from marine sources is considered an effective and economical alternative for marine engineering and the construction of remote islands. To protect sea coral ecosystems, the coral aggregates used for construction are only efflorescent coral debris. To achieve the expected mechanical performance from the studied concrete, an optimal mixture design is conducted to determine the optimal proportions of components, in order to optimize the compressive strength. The mechanical properties and the autogenous shrinkage, as well as the heat flow of early hydration reactions, are measured. The hydration products fill up the pores of coral aggregates, endowing our concrete with flowability and self-compacting ability. The phases in the marine concrete are identified via X-ray diffraction analysis. The 28-day compressive and flexural strength of the developed marine concrete achieve 116.76 MPa and 18.24 MPa, respectively. On account of the lower cement content and the internal curing provided by coral aggregates, the volume change resulting from autogenous shrinkage is only 63.11% of that of ordinary reactive powder concrete.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Roger P. A’Hern

Abstract Background Accuracy can be improved by taking multiple synchronous samples from each subject in a study to estimate the endpoint of interest if sample values are not highly correlated. If feasible, it is useful to assess the value of this cluster approach when planning studies. Multiple assessments may be the only method to increase power to an acceptable level if the number of subjects is limited. Methods The main aim is to estimate the difference in outcome between groups of subjects by taking one or more synchronous primary outcome samples or measurements. A summary statistic from multiple samples per subject will typically have a lower sampling error. The number of subjects can be balanced against the number of synchronous samples to minimize the sampling error, subject to design constraints. This approach can include estimating the optimum number of samples given the cost per subject and the cost per sample. Results The accuracy improvement achieved by taking multiple samples depends on the intra-class correlation (ICC). The lower the ICC, the greater the benefit that can accrue. If the ICC is high, then a second sample will provide little additional information about the subject’s true value. If the ICC is very low, adding a sample can be equivalent to adding an extra subject. Benefits of multiple samples include the ability to reduce the number of subjects in a study and increase both the power and the available alpha. If, for example, the ICC is 35%, adding a second measurement can be equivalent to adding 48% more subjects to a single measurement study. Conclusion A study’s design can sometimes be improved by taking multiple synchronous samples. It is useful to evaluate this strategy as an extension of a single sample design. An Excel workbook is provided to allow researchers to explore the most appropriate number of samples to take in a given setting.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5705
Author(s):  
Rubén Beltrán Cobos ◽  
Fabiano Tavares Pinto ◽  
Mercedes Sánchez Moreno

Crystalline admixtures are employed for waterproofing concrete. This type of admixtures can affect the early age performance of cement-based mixes. The electrical resistance properties of cement have been related to the initial setting time and to the hydration development. This paper proposes a system for remote monitoring of the initial setting time and the first days of the hardening of cement-based mortars to evaluate the effect of the incorporation of crystalline admixtures. The electrical resistance results have been confirmed by other characterization techniques such as thermogravimetric analysis and compressive strength measurements. From the electrical resistance monitoring it has been observed that the incorporation of crystalline admixtures causes a delay in the initial setting time and hydration processes. The measurements also allow to evaluate the influence of the amount of admixture used; thus, being very useful as a tool to define the optimum admixture dosage to be used.


Sign in / Sign up

Export Citation Format

Share Document