scholarly journals Effect of Sizing Agents on Surface Properties of T800 Grade CF and Thermal Aging Time on Mechanical Properties of T800 Grade CF/Epoxy Composites

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Tian Yang ◽  
Yan Zhao ◽  
Hansong Liu ◽  
Shu Xiong

This paper investigates the effect of sizing agent molecular weight on carbon fiber (CF) surface properties and the effect of thermal aging time on mechanical properties of CF/epoxy composites. The surface properties of three CCF800 CF samples with varying sizing agent molecular weight were characterized by surface morphology, surface roughness, chemical functional groups, and element composition. The results showed that the sample with low molecular weight exhibited low roughness and high proportion of activated carbon atoms. The flexural strength, flexural modulus, and interlaminar shear strength of CCF800/5228 composites were measured at 25°C and 150°C by thermal ageing time 0, 100 h, 250 h, 500 h, and 1000 h. The results showed that the thermal aging time up to 1000 h had little effect on the flexural modulus, and the interlaminar shear performance at 150°C showed a trend of increasing at the beginning and then decreasing.

1995 ◽  
Vol 7 (1) ◽  
pp. 105-124 ◽  
Author(s):  
T H Hou ◽  
N J Johnston ◽  
T L St Clair

LARCTM-IA (Langley Research Center-Improved Adhesive) aromatic polyimide, based on oxydiphthalic anhydride and 3.4'-oxydianiline, was evaluated as a matrix for high-performance composites. Six poly(amide acid)solutions in N-methylpyrrolidone (NMP), end-capped with phthalic anhydride to various theoretical molecular weights, were synthesized and their molecular weights and molecular weight distributions determined, Importantly, high concentrations of low-molecular-weight species were found in all the offset compositions. Except for the 1% offset polymer, all fully imidized films failed a solvent resistance test which involved immersion in acetone, methyl ethyl ketone, toluene, dimethylacetamide and chloroform for 1 min followed by a fingernail crease. Unidirectional prepreg was fabricated from each of the six resins by both standard drum winding procedures and the LARC multipurpose prepreg machine. The consolidation cycle developed previously for IM7/LARCTM-ITPI composites was found to be equally applicable for IM7/LARCTM-IA composites since both materials are similar and were prepared in and prepregged from NMP. An optimal end-capped resin composition was identified (4% stoichiometric imbalance) by using, as a screening tool, initial composite mechanical properties (short-beam shear strength, longitudinal flexural strength and flexural modulus) at room temperature, 93, 150 and 177°C. Composite engineering properties for the 4% offset composition were obtained, including longitudinal tension, transverse flexural, longitudinal compression, interlaminar shear, short block compression, open hole compression and compression strength after impact. Notably, the CAI strength was 303.2 MPa (44 Ksi) showing that the LARCTM-IA composites have good damage tolerance. A minor modification of LARCTM-IA polymer backbone which did not alter the consolidation cycle, designated as LARCTM-IAX, improved solvent resistance measurably. Mechanical properties of IM7/LARCTM-IAX composites were shown to be comparable to those exhibited by the baseline IM7/LARCTM-IA composites.


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
O. I. Sekunowo ◽  
G. I. Lawal ◽  
S. O. Adeosun

Samples of the 6063 (Al-1.09Mg2Si) alloy ingot were melted in a crucible furnace and cast in metal and sand moulds, respectively. Standard tensile, hardness, and microstructural test specimens were prepared from cast samples, solution treated at 520∘C, soaked for 6 hrs, and immediately quenched at ambient temperature in a trough containing water to assume a supersaturated structure. The quenched specimens were then thermally aged at 175∘C for 3–7 hrs. Results show that at different ageing time, varied fractions of precipitates and intermetallics evolved in the specimens’ matrices which affect the resulting mechanical properties. The metal mould specimens aged for four hours (MTA-4) exhibited superior ultimate tensile strength of 247.8 MPa; microhardness, 68.5 HV; elongation, 28.2% . It is concluded that the extent of improvement in mechanical properties depends on the fractions, coherence, and distribution of precipitates along with the type of intermetallics developed in the alloy during ageing process.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1666
Author(s):  
Tsegaye Sh. Lemmi ◽  
Marcin Barburski ◽  
Adam Kabziński ◽  
Krzysztof Frukacz

Textile materials produced from a high tenacity industrial polyester fiber are most widely used in the mechanical rubber goods industry to reinforce conveyor belts, tire cords, and hoses. Reinforcement of textile rubber undergoes a vulcanization process to adhere the textile materials with the rubber and to enhance the physio-mechanical properties of the product. The vulcanization process has an influence on the textile material being used as a reinforcement. In this work, the effects of aging temperature and time on the high tenacity polyester yarn’s mechanical and surface structural properties were investigated. An experiment was carried out on a pre-activated high tenacity polyester yarn of different linear densities, by aging the yarn specimens under various aging temperatures of 140, 160, 200, and 220 °C for six, twelve, and thirty-five minutes of aging time. The tensile properties and surface structural change in the yarns pre- and post-aging were studied. The investigation illustrates that aging time and temperature influence the surface structure of the fiber, tenacity, and elongation properties of the yarn. Compared to unaged yarn, an almost five times higher percentage of elongation was obtained for the samples aged at 220 °C for 6 min, while the lowest tenacity was obtained for the sample subjected to aging under 220 °C for 35 min.


2006 ◽  
Vol 324-325 ◽  
pp. 1253-1256
Author(s):  
C.S. Kim ◽  
J.H. Kang ◽  
Jai Won Byeon ◽  
S.I. Kwun

The magnetic coercivity of ferritic 12Cr steel was experimentally studied in order to characterize its microstructures and mechanical properties during isothermal aging. As the aging time increased, the M23C6 carbide coarsened and additional precipitation of Fe2W phase was induced. The width of martensite lath increased to about 0.4μm after 4000 hrs of aging. The coercivity decreased as the number of precipitate decreased and the width of martensite lath increased. The hardness was proportional to the magnetic coercivity. These empirical linear relations suggested that the change in the microstructures and strength of ferritic 12Cr steel during thermal aging could be evaluated by monitoring the magnetic coercivity.


Author(s):  
Yuhong Yao ◽  
Jianfeng Wei ◽  
Jiangnan Liu ◽  
Zhengpin Wang ◽  
Yu Wang

Cast duplex stainless steels (CSS) used for PWR pipes are degraded due to thermal ageing embrittlement during long-term service at 288 °C to 327 °C. Z3CN20-09M Cast duplex Stainless Steels (CSS) made in France for domestic nuclear power plants were thermally aged at 400 °C for 100 h, 300 h, 1000 h, 3000 h and 10000 h. The tensile properties and the impact properties at different thermal aging duration were measured and the effects of the thermal aging time on the microscopic structures and substructures of Z3CN20-09M were respectively investigated by optical microscopy and transmission electron microscopy. The results showed that the tensile strengths of Z3CN20-09M CSS increased gradually with the increment of the thermal ageing time, whereas the impact properties decreased with the prolonging of the thermal ageing time. After long thermal ageing time the dislocation configurations were greatly changed in austenite, and there were precipitates along the austenite-ferrite interface. Moreover, the iron-rich α phase and the chromium-rich α phase precipitated in ferrite aged for 10000h by nucleation and growth rather than the spinodal decomposition. All of above revealed that Z3CN20-09M CSS became brittle during thermal ageing.


2011 ◽  
Vol 471-472 ◽  
pp. 827-832 ◽  
Author(s):  
Mazatusziha Ahmad ◽  
Mat Uzir Wahit ◽  
Mohammed Rafiq Abdul Kadir ◽  
Khairul Zaman Mohd Dahlan

In this study, blends of ultra high molecular weight polyethylene/high density polyethylene/polyethylene glycol (UHMWPE/HDPE/PEG) and the composites containing Hydroxyapatite (HA) as reinforcement filler were prepared via single screw extruder nanomixer followed by compression moulding. PEG (2phr) was used as processing aid and HA loadings were varied from 10 to 50 phr. HDPE and PEG were introduced to improve the extrudability of UHMWPE. Rheological behavior was studied via capillary rheometer while flexural and izod impact tests were conducted in order to investigate the mechanical properties of the blends and composites. Melt viscosity of the blends was found to decrease with increasing shear rate indicating a pseudoplastic behaviour. Incorporation of PEG shows a synergism effect on the reduction of blends viscosity. Blend of 40% UHMWPE/ 60% HDPE/ 2 phr PEG was chosen as the optimum blend composition with a balance properties in terms of the mechanical properties and processability. The incorporation of HA fillers from 10 to 50 phr into the blend resulted in the increase of flexural modulus and flexural strength with a slight decline of impact strength values. It can be concluded that the composites having adequate strength and modulus within the range of cancellous bone properties were succesfully developed to be used as biomedical implant devices.


Processes ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 226 ◽  
Author(s):  
Ze Kan ◽  
Hao Shi ◽  
Erying Zhao ◽  
Hui Wang

Anionic polyamide-6 (APA-6) composites are prepared by the VARIM process using different modified ramie fabrics to study the structure and properties of different composites. This study can not only evaluate the optimal modification method for the ramie fabrics, but also further explore the interface interaction mechanism between ramie fabrics and APA-6. In this article, the ramie fabrics are modified by a pretreatment, coupling agent and alkali modification. Different modification methods have different effects on the structure, surface properties and mechanical properties of ramie fabrics, which will further affect the impregnation process, interfacial and mechanical properties of the composites. Through the performance analysis of different modified ramie fabrics reinforced APA-6 composites, the conversion, crystallinity and molecular weight of these composites are at a high level, which indicate that the polymerization of these composites is well controlled. The coupling agent modified ramie fabrics composites and the pretreated ramie fabrics composites have higher flexural modulus, tensile strength and dynamic mechanical properties. Alkali-modified ramie fabrics composites have slightly lower mechanical properties, which however have the highest interlaminar shear strength and outperformed interface properties of the composites.


2019 ◽  
Vol 8 (4) ◽  
pp. 6972-6977

The use of natural fiber composite has been widely promoted in many industries such as construction, automotive and even aerospace. Natural fibers can be extracted from plants that are abundantly available in the form of waste such as sunflower seed shells (SSS) and groundnut shells (GNS). These fibers were chosen as the reinforcement in epoxy to form composites. The performance of composites was evaluated following the ASTM D3039 and ASTM D790 for tensile and flexural tests respectively. Eight types of composites were prepared using SSS and GNS fibers as reinforcement and epoxy as the matrix with the fiber content of 20wt %. The fibers were untreated and treated with Sodium Hydroxide (NaOH) at various concentrations (6%, 10%, 15%, and 20%) and soaking time (24, 48 and 72 hours). The treatment has successfully enhanced the mechanical properties of both composites, namely SSS/epoxy and GNS/epoxy composites. The SSS/epoxy composite has the best mechanical properties when the fibers were treated for 48 hours using 6% of NaOH that produced 22 MPa and 13 MPa of tensile and flexural strength respectively. Meanwhile, the treatment on groundnut shells with 10% sodium Hydroxide for 24 hours has increased the Flexural strength tremendously (53%), however no significant effect on the tensile strength. The same trend was also observed on the tensile and flexural modulus. The increase of 41% in flexural modulus after treatment with 10% NaOH for 24 hours was also the evidence of mechanical properties enhancement. The evidence of improved fiber and matrix bonding after fiber treatment was also observed using a scanning electron microscope (SEM). The SSS/epoxy composites performed better in tensile application, meanwhile the GNS/epoxy composites are good in flexural application.


2020 ◽  
pp. 152808372096073
Author(s):  
Marwa A Abd El-baky ◽  
Mohamed A Attia

In this study, the effect of different weight percentages (wt. %) of halloysite nanotubes (HNTs) on the mechanical performance of glass laminate aluminum (Al) reinforced epoxy (GLARE) was investigated. GLARE (3/2) laminates with quasi-isotropic lay-up, [Al/[(0°/90°)/(45°/−45°)]s/Al/[(0°/90°)/(45°/−45°)]s/Al] filled with 0, 0.25, 0.5, 1, 2 and 3 wt. % of HNTs were fabricated using hand lay-up followed by compression molding. To explore the effect of HNTs on the mechanical properties, tensile, flexural, in-plane shear, interlaminar shear, bearing and impact tests were conducted. Results demonstrated that the inclusion of 1 wt. % of HNTs into GLARE leads to maximum improvements of 35.67, 8.50, 28.85, 50.47, 50.27, 30.43, 23.73, 72.08, 30.74, and 51.52% in tensile strength, tensile strain, Young's modulus, modulus of toughness, flexural strength, flexural strain, in-plane shear strength, interlaminar shear strength, bearing strength, and impact strength, respectively, compared to pristine GLARE. An enhancement of 38.89% in the flexural modulus was attained by adding 0.5 wt. % of HNTs to GLARE compared to pristine GLARE. The tensile strength, tensile strain, modulus of toughness, flexural strength, flexural modulus, flexural strain, in-plane shear strength, and interlaminar shear strength of GLARE filled with 3 wt. % of HNTs are 0.91, 0.88, 0.91, 0.91, 0.71, 0.83, 0.85, and 0.91 times those of the original GLARE. But Young’s modulus, bearing strength, and impact strength are 1.10, 1.15 and 1.20 times those of the original GLARE. To investigate the fracture mechanism, field emission scanning electron microscope (FE-SEM) and energy-dispersive X-ray spectroscopy (EDX) were used. The microscopic images revealed that adding HNTs lead to the improvement in the interaction between the epoxy matrix and glass fiber, thereby improving the mechanical properties.


2018 ◽  
Vol 31 (6) ◽  
pp. 623-630 ◽  
Author(s):  
Yiqun Wang ◽  
Shiyi Zhou ◽  
Haiying Du ◽  
Wentao Zhang

Fibre-reinforced polymer (FRP) composites with thermosetting resin matrices are widely used in civil engineering (e.g. pultruded FRP plates and bars), and their thermal ageing behaviour is a concern when they are subjected to elevated temperatures (e.g. FRP chimney). In the present article, the effects of thermal ageing at 200°C and 250°C in air for up to 1000 h on mechanical properties and mechanism of the benzoxazine (Boz), bisphenol A dicyanate cyanate ester (BADCy), and 4,4′-bismaleimidodiphenyl methane (BMI) have been investigated. The effect of time in thermal ageing on structural and mechanical properties of the Boz/BMI/BADCy resin was deeply studied. The moisture absorption increases linearly with the square root of ageing time and it follows Fick’s second law. There are two main categories of reactions in thermal ageing: the first one is the post-curing process, which leads to a larger crosslinking density and a reduced interior stress; while the other is the formation of microcracks and thermal oxidation at the surface of the Boz/BMI/BADCy resin. The combination of the above factors leads to an increase–decrease variation in the mechanical properties. This work is believed to benefit the wide and safe application of a certain Boz/BMI/BADCy resin system in engineering application.


Sign in / Sign up

Export Citation Format

Share Document