scholarly journals Towards Embedded Computation with Building Materials

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1724
Author(s):  
Dawid Przyczyna ◽  
Maciej Suchecki ◽  
Andrew Adamatzky ◽  
Konrad Szaciłowski

We present results showing the capability of concrete-based information processing substrate in the signal classification task in accordance with in materio computing paradigm. As the Reservoir Computing is a suitable model for describing embedded in materio computation, we propose that this type of presented basic construction unit can be used as a source for “reservoir of states” necessary for simple tuning of the readout layer. We present an electrical characterization of the set of samples with different additive concentrations followed by a dynamical analysis of selected specimens showing fingerprints of memfractive properties. As part of dynamic analysis, several fractal dimensions and entropy parameters for the output signal were analyzed to explore the richness of the reservoir configuration space. In addition, to investigate the chaotic nature and self-affinity of the signal, Lyapunov exponents and Detrended Fluctuation Analysis exponents were calculated. Moreover, on the basis of obtained parameters, classification of the signal waveform shapes can be performed in scenarios explicitly tuned for a given device terminal.

1997 ◽  
Vol 17 (5) ◽  
pp. 1027-1042 ◽  
Author(s):  
RODRIGO BAMÓN ◽  
CARLOS G. MOREIRA ◽  
SERGIO PLAZA ◽  
JAIME VERA

Central Cantor sets form a class of symmetric Cantor sets of the real line. Here we give a complete characterization of the $C^{k + \alpha}$ regularity of these Cantor sets. We also give a classification of central Cantor sets up to global and local diffeomorphisms. Examples of central Cantor sets with special dynamical and measure-theoretical properties are also provided. Finally, we calculate the fractal dimensions of an arbitrary central Cantor set.


Heritage ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 4126-4147
Author(s):  
Jorge Ribeiro ◽  
Filipe Antunes ◽  
Ana Fragata

Architectural Terracotta (ATC) is one of the most common materials in excavations from the Roman period. These ceramic building materials are an essential component of construction. Some of these pieces show potter´s marks, of different categories, that allow access to the production world of these materials. This investigation is a first typological classification of the 1216 marks from ATC materials, collected from 41 archaeological sites in Bracara Augusta (Braga, Portugal). Most of the marks were collected from the domus of Carvalheiras, one of the most emblematic archaeological sites of the city, currently under a musealization process. With this work it was possible to correlate the studied marks with specific terracotta types (shapes), context distribution and associated chronologies. The results suggested an organized and dynamic production, and an open-market, supported by numerous officinae, certainly of different sizes. Some of them were located near the housing area and reveal the presence of a large number of workers, including women and children. Further approaches on mineralogical, chemical and technological characterization of ATC, linked with stratigraphy, are under development.


1981 ◽  
Vol 4 ◽  
Author(s):  
T. J. Stultz ◽  
J. F. Gibbons

ABSTRACTStructural and electrical characterization of laser recrystallized LPCVD silicon films on amorphous substrates using a shaped cw laser beam have been performed. In comparing the results to data obtained using a circular beam, it was found that a significant increase in grain size can be achieved and that the surface morphology of the shaped beam recrystallized material was much smoother. It was also found that whereas circular beam recrystallized material has a random grain structure, shaped beam material is highly oriented with a <100> texture. Finally the electrical characteristics of the recrystallized film were very good when measured in directions parallel to the grain boundaries.


2011 ◽  
Vol E94-C (2) ◽  
pp. 157-163 ◽  
Author(s):  
Masakazu MUROYAMA ◽  
Ayako TAJIRI ◽  
Kyoko ICHIDA ◽  
Seiji YOKOKURA ◽  
Kuniaki TANAKA ◽  
...  

Author(s):  
E. Hendarto ◽  
S.L. Toh ◽  
J. Sudijono ◽  
P.K. Tan ◽  
H. Tan ◽  
...  

Abstract The scanning electron microscope (SEM) based nanoprobing technique has established itself as an indispensable failure analysis (FA) technique as technology nodes continue to shrink according to Moore's Law. Although it has its share of disadvantages, SEM-based nanoprobing is often preferred because of its advantages over other FA techniques such as focused ion beam in fault isolation. This paper presents the effectiveness of the nanoprobing technique in isolating nanoscale defects in three different cases in sub-100 nm devices: soft-fail defect caused by asymmetrical nickel silicide (NiSi) formation, hard-fail defect caused by abnormal NiSi formation leading to contact-poly short, and isolation of resistive contact in a large electrical test structure. Results suggest that the SEM based nanoprobing technique is particularly useful in identifying causes of soft-fails and plays a very important role in investigating the cause of hard-fails and improving device yield.


Author(s):  
Randal Mulder ◽  
Sam Subramanian ◽  
Tony Chrastecky

Abstract The use of atomic force probe (AFP) analysis in the analysis of semiconductor devices is expanding from its initial purpose of solely characterizing CMOS transistors at the contact level with a parametric analyzer. Other uses found for the AFP include the full electrical characterization of failing SRAM bit cells, current contrast imaging of SOI transistors, measuring surface roughness, the probing of metallization layers to measure leakages, and use with other tools, such as light emission, to quickly localize and identify defects in logic circuits. This paper presents several case studies in regards to these activities and their results. These case studies demonstrate the versatility of the AFP. The needs and demands of the failure analysis environment have quickly expanded its use. These expanded capabilities make the AFP more valuable for the failure analysis community.


Author(s):  
Yuk L. Tsang ◽  
Alex VanVianen ◽  
Xiang D. Wang ◽  
N. David Theodore

Abstract In this paper, we report a device model that has successfully described the characteristics of an anomalous CMOS NFET and led to the identification of a non-visual defect. The model was based on detailed electrical characterization of a transistor exhibiting a threshold voltage (Vt) of about 120mv lower than normal and also exhibiting source to drain leakage. Using a simple graphical simulation, we predicted that the anomalous device was a transistor in parallel with a resistor. It was proposed that the resistor was due to a counter doping defect. This was confirmed using Scanning Capacitance Microscopy (SCM). The dopant defect was shown by TEM imaging to be caused by a crystalline silicon dislocation.


Author(s):  
Yuk L. Tsang ◽  
Xiang D. Wang ◽  
Reyhan Ricklefs ◽  
Jason Goertz

Abstract In this paper, we report a transistor model that has successfully led to the identification of a non visual defect. This model was based on detailed electrical characterization of a MOS NFET exhibiting a threshold voltage (Vt) of just about 40mv lower than normal. This small Vt delta was based on standard graphical extrapolation method in the usual linear Id-Vg plots. We observed, using a semilog plot, two slopes in the Id-Vg curves with Vt delta magnified significantly in the subthreshold region. The two slopes were attributed to two transistors in parallel with different Vts. We further found that one of the parallel transistors had short channel effect due to a punch-through mechanism. It was proposed and ultimately confirmed the cause was due to a dopant defect using scanning capacitance microscopy (SCM) technique.


Sign in / Sign up

Export Citation Format

Share Document