scholarly journals Investigation of Ib-Values for Determining Fracture Modes in Fiber-Reinforced Composite Materials by Acoustic Emission

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3641
Author(s):  
Doyun Jung ◽  
Woong-Ryeol Yu ◽  
Wonjin Na

This study analyzed failure behavior using Ib-values obtained from acoustic emission (AE) signals. Carbon fiber/epoxy specimens were fabricated and tested under tensile loads, during which AE signals were collected. The dominant peak frequency exhibited a specific range according to fracture mode, depending on the fiber structures. Cross-ply specimens, with all fracture modes, were used and analyzed using b- and Ib-values. The b-values decreased over the specimens’ entire lifetime. In contrast, the Ib-values decreased to 60% of the lifetime, and then increased because of the different fracture behaviors of matrix cracking and fiber fracture, demonstrating the usefulness of Ib-values over b-values. Finally, it was confirmed that abnormal conditions could be analyzed more quickly using failure modes classified by Ib-values, rather than using full AE data.

2021 ◽  
Vol 11 (14) ◽  
pp. 6550
Author(s):  
Doyun Jung ◽  
Wonjin Na

The failure behavior of composites under ultraviolet (UV) irradiation was investigated by acoustic emission (AE) testing and Ib-value analysis. AE signals were acquired from woven glass fiber/epoxy specimens tested under tensile load. Cracks initiated earlier in UV-irradiated specimens, with a higher crack growth rate in comparison to the pristine specimen. In the UV-degraded specimen, a serrated fracture surface appeared due to surface hardening and damaged interfaces. All specimens displayed a linearly decreasing trend in Ib-values with an increasing irradiation time, reaching the same value at final failure even when the starting values were different.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012016
Author(s):  
Fei Song ◽  
Likun Peng ◽  
Jia Chen ◽  
Benmeng Wang

Abstract In order to realize the nondestructive testing (NDT) of the internal leakage fault of hydraulic spool valves, the internal leakage rate must be predicted by AE (acoustic emission) technology. An AE experimental platform of internal leakage of hydraulic spool valves is built to study the characteristics of AE signals of internal leakage and the relationship between AE signals and leakage rates. The research results show the AE signals present a wideband characteristic. The main frequencies are concentrated in 30~50 kHz and the peak frequency is around 40 kHz. When the leakage rate is large, there are significant signal characteristics appearing in the high frequency band of 75~100 kHz. The exponent of the root mean square(RMS) of AE signals is positively correlated with the exponent of the leakage rate only if the leakage rate is greater than 2~3 mL/min. This find could be used to predict the internal leakage rate of hydraulic spool valves.


2012 ◽  
Vol 198-199 ◽  
pp. 60-63
Author(s):  
Wen Qin Han ◽  
Jin Yu Zhou

Acoustic emission (AE) monitoring is the primary technology used for the identification of different types of failure in composite materials. Tensile test were carried out on twill-weave composite specimens, and acoustic emissions were recorded from these tests. AE signals were decomposed into a set of Intrinsic Mode Functions(IMF) components by means of Empirical Mode Decomposition(EMD) , the Fast Fourier Transform (FFT) of each IMF component was performed, it was shown that the event peak frequency of each IMF component could be directly related to the materials damage modes.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Surojit Poddar ◽  
N. Tandon

Abstract This present article evaluates the state of starvation in a journal bearing using acoustic emission (AE) and vibration measurement techniques. A journal bearing requires a constant supply of oil in an adequate amount to develop a hydrodynamic film, thick enough to separate the surfaces and avoid asperity contacts. On a microscopic level, the surface interaction under starved lubrication results in deformation and fracture of asperities. This causes a proportionate increase in AE and vibration. The AE activities resulting from asperities interaction have significant energy in the frequency range of 100–400 kHz with peak frequencies in the range of 224–283 kHz. Further, the peak frequency shifts from the higher to lower side as the asperity interaction transits from the elastic to plastic contact. This information derived from the spectral analysis of AE signals can be used to develop condition monitoring parameters to proactively control the lubrication and prevent bearing failure.


2020 ◽  
Vol 10 (11) ◽  
pp. 3674
Author(s):  
Jiaoyan Huang ◽  
Zhiheng Zhang ◽  
Cong Han ◽  
Guoan Yang

The Acoustic Emission (AE) is a widely used real-time monitoring technique for the deformation damage and crack initiation of areo-engine blades. In this work, a tensile test for TC11 titanium alloy, one of the main materials of aero-engine, was performed. The AE signals from different stages of this test were collected. Then, the AE signals were decomposed by the Variational Mode Decomposition (VMD) method, in which the signals were divided into two different frequency bands. We calculated the engery ratio by dividing the two different frequency bands to characterize TC11′s degree of deformation. The results showed that when the energy ratio was −0.5 dB, four stages of deformation damage of the TC11 titanium alloy could be clearly identified. We further combined the calculated Partial Energy Ratio (PER) and Weighted Peak Frequency (WPF) to identify the crack initiation of the TC11 titanium alloy. The results showed that the identification accuracy was 96.33%.


2013 ◽  
Vol 325-326 ◽  
pp. 123-127
Author(s):  
Zi Zhen Cao ◽  
Ji Feng Zhang ◽  
Yun Wan ◽  
Yong Gang Xie

A three-dimensional progressive damage model is proposed to predict the open-hole tensile strength of Glare laminates. For the glass fiber reinforced epoxy the user subroutine UMAT is employed for description of the failure modes, such as matrix cracking and fiber failure. Behavior of the delamination between plies of the laminate is described using cohesive elements. Laminates with a rhombic hole, a square hole and a circular hole are taken into consideration separately. The results obtained by the present solution approach are validated with those available in the literatures.


2018 ◽  
Author(s):  
DC Pham

Composite materials exhibit complex failure behavior under impact loading especially such as that for composite landing gear structure. Possible failure modes in composites may include matrix cracking, fiber breakage, kinking, fiber-matrix debonding or delamination between composite plies. In order to better understand the damage mechanisms and non-linear response of composite structures under impact, complex geometries, materials, ply orientations and stacking sequence need to be considered. However, general drop test analysis for composite structures usually takes a lot of computational efforts, and it may be even more expensive for failure analysis and optimization when various structural geometries and design configurations are taken into account. This paper proposes a new methodology for evaluation and optimization of failure behavior of composite structures subjected to impact loading, whereby drop test analysis of composite structures is modeled by explicitly dynamics analysis of two-dimensional structures and implicit analysis of three-dimensional solid structures to predict delamination or out-of-plane failure. The above-mentioned modeling strategy helps speed up the optimization process and considerably save computational time and efforts. The proposed methodology together with reliable optimization algorithms and failure theory criteria are integrated and coded into a FE optimization tool by Python script. It is shown that the optimization tool effectively helps engineers and researchers perform optimization of general composite structures and fully take into account of various geometries, materials, loading configurations, composite stack-up and sequences and individual ply's orientation.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 4285-4290 ◽  
Author(s):  
JIN WOOK KIM ◽  
YOUNG UN KIM ◽  
CHANG KWON MOON ◽  
SEOK HWAN AHN ◽  
KI WOO NAM

In this study, the heat-damage process of a carbon fiber reinforced plastic (CFRP) under monotonic tensile loading was characterized by acoustic emission. Additionally, epoxy specimens and prepreg specimens were used to determine the characteristics of acoustic emission (AE) signals of epoxy and fiber, respectively. The AE characteristics of CFRP showed three types of distinct frequency regions. Time-frequency analysis methods were employed for the analysis of fracture mechanisms in CFRP such as matrix cracking, debonding and fiber fracture. To evaluate the cumulative counts of AE signals, it seems that the results can be applied usefully to guarantee structural integrity and/or to the survey of destruction of the structure with heat-damage, that was made to the composite materials.


2021 ◽  
Vol 50 (2) ◽  
pp. 287-300
Author(s):  
Yuxin Ban ◽  
Qiang Xie ◽  
Xiang Fu ◽  
Rini Asnida Abdullah ◽  
Jingjing Wang

Evidence indicate that the stability of rock mass is highly associated with the shear behaviours of jointed surfaces under the effect of in situ stress conditions. Understanding the shear failure mechanism of jointed surface has great significance for tunneling and drilling engineering. Direct shear tests were conducted on jointed rock-like specimens to investigate the influence of joint roughness and normal stress on shear failure characteristics. In the present study, regular triangular sawtooth was produced to simulate different asperities. Based on the direct shear test, the specimens exhibited four types of failure modes: damage tend to occur on the sawtooth tips under low normal stress; whereas damage occurred on a large scale under high normal stress; a localized region of the sawtooth was worn when the dilation angle was small; meanwhile the sawtooth tips or base were cut off when the dilation angle was large. In addition, Acoustic Emission (AE) technology was adopted to synchronously monitor the development of cracks during testing. Further attempt has been carried out to simulate the crack initiation, propagation and coalescence using Particle Flow Code (PFC). The numerical model has successfully verified and explained the crack behaviors determined by the shear failure mechanism in the physical test. Additionally, the irregular profile was introduced in the PFC, it was found that the failure behavior in sawtooth profile has established a good conclusion to fully understand the failure mechanism in the irregular profile. This work can provide some reference for evaluating the behavior of underground engineering composed of jointed rock masses during the shearing.


2021 ◽  
Vol 9 ◽  
Author(s):  
Li Shengxiang ◽  
Xie Qin ◽  
Liu Xiling ◽  
Li Xibing ◽  
Luo Yu ◽  
...  

In order to investigate the relationship between rock microfracture mechanism and acoustic emission (AE) signal characteristic parameters under split loads, the MTS322 servo-controlled rock mechanical test system was employed to carry out the Brazilian split tests on granite, marble, sandstone, and limestone, while FEI Quanta-200 scanning electron microscope system was employed to carry out the analysis of fracture morphology. The results indicate that different scales of mineral particle, mineral composition, and discontinuity have influence on the fracture characteristics of rock, as well as the b-value. The peak frequency distribution of the AE signal has obvious zonal features, and these distinct peak frequencies of four types of rock fall mostly in ranges of 0–100 kHz, 100–300 kHz, and above 300 kHz. Due to the different rock properties and mineral compositions, the proportions of peak frequencies in these intervals are also different among the four rocks, which are also acting on the b-value. In addition, for granite, the peak frequencies of AE signals are mostly distributed above 300 kHz for granite, marble, and limestone, which mainly derive from the internal fracture of k-feldspar minerals; for marble, the AE signals with peak frequency are mostly distributed in over 300 kHz, which mainly derive from the internal fracture of dolomite minerals and calcite minerals; AE signals for sandstone are mostly distributed in the range of 0–100 kHz, which mainly derive from the internal fracture of quartz minerals; for limestone, the AE signals with peak frequency are mostly distributed in over 300 kHz, which mainly derive from the internal fracture of granular-calcite minerals. The relationship between acoustic emission signal frequency of rock fracture and the fracture scale is constructed through experiments, which is of great help for in-depth understanding of the scaling relationship of rock fracture.


Sign in / Sign up

Export Citation Format

Share Document