scholarly journals The Impact of Chloride and Sulphate Aggressiveness on the Microstructure and Phase Composition of Fly Ash-Slag Mortar

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4430
Author(s):  
Paweł Falaciński ◽  
Agnieszka Machowska ◽  
Łukasz Szarek

The article discusses the results of examining the impact of aggressive solutions on specimens of mortars with a slag-ash binder. Bar specimens were exposed to unidirectional diffusion of sodium chloride and sodium sulphate for 90 days. Next, the specimens were subjected to flexural and compressive strength tests, ion content tests, XRD phase composition tests, and microstructural SEM-EDS tests. The test results indicated that aggressive solution action resulted in decreased flexural strength, however, it did not impact the compressive strength of mortars. A minor impact of chloride ions on the pH of the pore liquid was recorded, while the tests did not show any influence of sulphate ions. Furthermore, aggressive ion concentration decreased in deeper specimen slices. Specimen phase composition testing after chloride ion action indicated the presence of a small amount of Friedel’s salt, while regular sodium chloride crystals were identified in the microscopic image. The performance properties of mortars exposed to the action of aggressive solutions were maintained.

2022 ◽  
Vol 10 (1) ◽  
pp. 80
Author(s):  
Xiangsheng Chen ◽  
Jun Shen

The adverse effects of a hostile marine environment on concrete structures inevitably result in great economic loss and may contribute to catastrophic failure. There is limited information on the durability of concrete in a tensile stress-chloride ion-carbon dioxide (TCC) multiple-corrosion environment. The objective of this study is to explore the impact of a TCC multiple-corrosion environment on concrete considering three coupled factors of compressive strength, Cl− penetration, and carbonation. Dry–wet cycle tests were conducted to determine the strength degradation and Cl− penetration concentration of concrete in a hostile multiple-corrosion marine environment. The results show that the effects of water-soluble chloride ions (Cl−), carbon dioxide (CO2), and tensile stress on concrete are not a simple superposition, but involve obvious interaction. The compressive strength of a concrete specimen first increases and then decreases in chlorine salt-carbon tests. The Cl− concentration and tensile stress affect the carbonation depth of concrete, which increases with an increase in Cl− concentration, and with the application of tensile stress. The Cl− concentration has an obvious effect on the carbonation depth. In addition to experimental observations, a stepwise regression equation was established based on the multiple linear regression theory. A correlation analysis considering different factors was conducted to reflect the corrosion results more directly.


2014 ◽  
Vol 881-883 ◽  
pp. 1221-1224 ◽  
Author(s):  
Wei Zhang

The chloride ion concentration of sea sand were measured by Volhard method and identified the method of removal chloride ions in sea sand. By comparison of compression test for sea sand concrete and river sand concrete ,two compressive strength performance is basically the same , Verify the feasibility of the concrete of the treated sea sand for bluiding.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adrian Radoń ◽  
Dariusz Łukowiec ◽  
Patryk Włodarczyk

AbstractThe dielectric properties and electrical conduction mechanism of bismuth oxychloride (BiOCl) plates synthesized using chloramine-T as the chloride ion source were investigated. Thermally-activated structure rebuilding was monitored using broadband dielectric spectroscopy, which showed that the onset temperature of this process was 283 K. This rebuilding was related to the introduction of free chloride ions into [Bi2O2]2+ layers and their growth, which increased the intensity of the (101) diffraction peak. The electrical conductivity and dielectric permittivity were related to the movement of chloride ions between plates (in the low-frequency region), the interplanar motion of Cl− ions at higher frequencies, vibrations of these ions, and charge carrier hopping at frequencies above 10 kHz. The influence of the free chloride ion concentration on the electrical conductivity was also described. Structure rebuilding was associated with a lower concentration of free chloride ions, which significantly decreased the conductivity. According to the analysis, the BiOCl plate conductivity was related to the movement of Cl− ions, not electrons.


1988 ◽  
Vol 66 (5) ◽  
pp. 637-642 ◽  
Author(s):  
Timothy J. Blaxter ◽  
Peter L. Carlen

The dendrites of granule cells in hippocampal slices responded to γ-aminobutyric acid (GABA) with a depolarization. The response was blocked by picrotoxin in a noncompetitive manner. Reductions in the extracellular chloride ion concentration changed the reversal potential of the response by an amount predicted from the Nernst equation for chloride ion. Chloride-dependent hyperpolarizing responses were sometimes also found in the cell body of the granule cells. Since the reversal potential followed that predicted from the Nernst equation for chloride, we conclude that the response was mediated by chloride ions alone with no contribution from other ions. This has not previously been shown for the depolarizing response to GABA in central neurons.


1972 ◽  
Vol 57 (3) ◽  
pp. 821-838
Author(s):  
JOHN P. LEADER

1. The larva of Philanisus plebeius is capable of surviving for at least 10 days in external salt concentrations from 90 mM/l sodium chloride (about 15 % sea water) to 900 mM/l sodium chloride (about 150 % sea water). 2. Over this range the osmotic pressure and the sodium and chloride ion concentrations of the haemolymph are strongly regulated. The osmotic pressure of the midgut fluid and rectal fluid is also strongly regulated. 3. The body surface of the larva is highly permeable to water and sodium ions. 4. In sea water the larva is exposed to a large osmotic flow of water outwards across the body surface. This loss is replaced by drinking the medium. 5. The rectal fluid of larvae in sea water, although hyperosmotic to the haemolymph, is hypo-osmotic to the medium, making it necessary to postulate an extra-renal site of salt excretion. 6. Measurements of electrical potential difference across the body wall of the larva suggest that in sea water this tissue actively transports sodium and chloride ions out of the body.


1980 ◽  
Vol 43 (331) ◽  
pp. 901-904 ◽  
Author(s):  
D. Alun Humphreys ◽  
John H. Thomas ◽  
Peter A. Williams ◽  
Robert F. Symes

SummaryThe chemical stabilities of mendipite, Pb3O2Cl2, diaboleïte, Pb2CuCl2(OH)4, chloroxiphite, Pb3CuCl2O2(OH)2, and cumengéite, Pb19Cu24Cl42 (OH)44, have been determined in aqueous solution at 298.2 K. Values of standard Gibbs free energy of formation, ΔGf°, for the four minerals are −740, −1160, −1129, and −15163±20 kJ mol−1 respectively. These values have been used to construct the stability diagram shown in fig. I which illustrates their relationships to each other and to the minerals cotunnite, PbCl2, paralaurionite, PbOHCl, and litharge, PbO. This diagram shows that mendipite occupies a large stability field and should readily form from cold, aqueous, mineralizing solutions containing variable amounts of lead and chloride ions, and over a broad pH range. The formation of paralaurionite and of cotunnite requires a considerable increase in chloride ion concentration, although paralaurionite can crystallize under much less extreme conditions than cotunnite. The encroachment of the copper minerals on to the stability fields of those mineral phases containing lead(II) only is significant even at very low relative activities of cupric ion. Chloroxiphite has a large stability field, and at given concentrations of cupric ion, diaboleïte is stable at relatively high aCl−. Cumengéite will only form at high concentrations of chloride ion.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3265 ◽  
Author(s):  
Anna Szcześniak ◽  
Jacek Zychowicz ◽  
Adam Stolarski

This paper presents research on the impact of fly ash addition on selected physical and mechanical parameters of concrete made with slag cement. Experimental tests were carried out to measure the migration of chloride ions in concrete, the tightness of concrete exposed to water under pressure, and the compressive strength and tensile strength of concrete during splitting. Six series of concrete mixes made with CEM IIIA 42.5 and 32.5 cement were tested. The base concrete mix was modified by adding fly ash as a partial cement substitute in the amounts of 25% and 33%. A comparative analysis of the obtained results indicates a significant improvement in tightness, especially in concrete based on CEM IIIA 32.5 cement and resistance to chloride ion penetration for the concretes containing fly ash additive. In the concretes containing fly ash additive, a slower rate of initial strength increase and high strength over a long period of maturation are shown. In accordance with the presented research results, it is suggested that changes to the European standardization system be considered, to allow the use of fly ash additive in concrete made with CEM IIIA 42.5 or 32.5 cement classes. Such a solution is not currently acceptable in standards in some European Countries.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1625
Author(s):  
Rekha Singh ◽  
Woohang Kim ◽  
James A. Smith

This study quantifies the effects of chloride ions on silver and copper release from porous ceramic cubes embedded with silver and copper and its effect on E. coli disinfection in drinking water. Log-reduction of E. coli by silver ions decreased after 4 h of contact time as the chloride ion concentration increased from 0 to 250 mg/L but, it was not changed by copper ions under the same conditions. For silver addition by silver-ceramic cubes, log reductions of E. coli decreased sharply from 7.2 to 1.6 after 12 h as the chloride concentration increased from 0 to 250 mg/L. For the silver-ceramic cube experiments, chloride ion also reduced the total silver concentration in solution. After 24 h, total silver concentrations in solution decreased from 61 µg/L to 20 µg/L for corresponding chloride ion concentrations. According to the MINTEQ equilibrium model analysis, the decrease in disinfection ability with silver embedded ceramic cubes could be the result of precipitation of silver ions as silver chloride. This suggests that AgCl was precipitating within the pore space of the ceramic. These results indicate that, although ionic silver is a highly effective disinfectant for E. coli, the presence of chloride ions can significantly reduce disinfection efficacy. For copper-ceramic cubes, log reductions of E. coli by copper embedded cubes increased from 1.2 to 1.5 when chloride ion concentration increased from 0 to 250 mg/L. Total copper concentrations in solution increased from 4 µg/L to 14 µg/L for corresponding chloride ion concentrations. These results point towards the synergistic effect of chloride ions on copper oxidation as an increased concentration of chloride enhances copper release.


2012 ◽  
Vol 166-169 ◽  
pp. 1987-1993 ◽  
Author(s):  
Mengcheng Chen ◽  
Kai Wang ◽  
Quanshui Wu ◽  
Zhen Qin

According to the service environment of light rail transit and subway structures, in this paper experiments on the corrosion characteristics of reinforced concrete under single corrosion environment of stray current, single corrosion environment of chloride ions and joint corrosion environment of stray current and chloride ions were respectively carried out. Loading direct current electric field was used to simulate the stray current. The experimental results showed that, the corrosion growth process of the rebar in reinforced concrete under single environment of chloride ions was slow and stable, while that under single environment of stray current being separated two stages, i.e., rapidly increasing stage and stably varying stage. In addition, the rebar of reinforced concrete in stray current alone environment was corroded faster than that in chloride ion alone environment did; when stray current and chloride ion coexist, the stray current speeded up the chloride ion transportation, which gave rise to the increase of the corrosion rate of the rebar of reinforced concrete; the corrosion degree of the rebar depended on the chloride ion concentration, stray current strength and test time. The stronger the stray current strength, the longer the stray current corrosion period and the heavier the chloride ion concentration, the more the corrosion products of the rebar and thus the more serious the reinforced concrete deterioration.


Biologija ◽  
2015 ◽  
Vol 61 (1) ◽  
Author(s):  
Aleksandrs Petjukevičs ◽  
Anna Batjuka ◽  
Nataļja Škute

In this study we used spectrophotometry to investigate the effect of negative concentrations of sodium chloride ions on photosynthetic pigments in <i>Elodea canadensis</i> (Michx. 1803). The concentrations of pigments, carotenoids, chlorophyll a and chlorophyll b, in plant leaves provide information about the physiological state of plants and were determined using a spectrophotometer. Quantity and dynamics analyses of photosynthetic pigments are effective methods which allow determining changes in metabolites of plant cells even at insignificant cellular damage. During this research photosynthetic pigments in leaves were obtained at the different sodium chloride levels: 0.0, 0.025, 0.05, 0.1, 0.5 and 1.0 M. The results of this research indicate that these types of stressors at high concentrations: 0.1, 0.5 and 1.0  M after a prolonged time of impact on plant leaves lead to a decrease of photosynthetic pigments and inhibit growth and development of a plant as a whole.


Sign in / Sign up

Export Citation Format

Share Document