scholarly journals Phase Transformations and Subsurface Changes in Three Dental Zirconia Grades after Sandblasting with Various Al2O3 Particle Sizes

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5321
Author(s):  
Hee-Kyung Kim ◽  
Kun-Woo Yoo ◽  
Seung-Joo Kim ◽  
Chang-Ho Jung

Although sandblasting is mainly used to improve bonding between dental zirconia and resin cement, the details on the in-depth damages are limited. The aim of this study was to evaluate phase transformations and subsurface changes after sandblasting in three different dental zirconia (3, 4, and 5 mol% yttria-stabilized zirconia; 3Y-TZP, 4Y-PSZ, and 5Y-PSZ). Zirconia specimens (14.0 × 14.0 × 1.0 mm3) were sandblasted using different alumina particle sizes (25, 50, 90, 110, and 125 µm) under 0.2 MPa for 10 s/cm2. Phase transformations and residual stresses were investigated using X-ray diffraction and the Williamson-Hall method. Subsurface damages were evaluated with cross-sections by a focused ion beam. Stress field during sandblasting was simulated by the finite element method. The subsurface changes after sandblasting were the emergence of a rhombohedral phase, micro/macro cracks, and compressive/tensile stresses depending on the interactions between blasting particles and zirconia substrates. 3Y-TZP blasted with 110-µm particles induced the deepest transformed layer with the largest compressive stress. The cracks propagated parallel to the surface with larger particles, being located up to 4.5 µm under the surface in 4Y- or 5Y-PSZ subgroups. The recommended sandblasting particles were 110 µm for 3Y-TZP and 50 µm for 4Y-PSZ or 5Y-PSZ for compressive stress-induced phase transformations without significant subsurface damages.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Beatriz Rodrigues Canabarro ◽  
Paula Mendes Jardim

Sodium niobate presents numerous interesting properties for technological application and can be produced in nanometric structures if synthesized by alkali hydrothermal route. Although the influence of synthesis conditions on the product morphology and crystal structure has been well explored for niobates synthesized from the powder of niobium oxide, the synthesis on metallic niobium platelets is not completely understood. Therefore, the present study seeks to correlate the synthesis’ variables, of alkali hydrothermal route, to morphology and thickness of sodium niobate nanowire layer supported on niobium platelets. An experimental design was planned to evaluate whether temperature, alkali solution concentration, and reactional duration influence on the produced materials. The morphology of 1D niobates produced was investigated by scanning, while crystal structure was analyzed by X-ray diffraction. The cross sections of 1D sodium niobate layers were cut with a focused ion beam, and their thickness was quantified by scanning electron microscopy images. It was concluded that all chosen variables influenced the thickness of the sodium niobate layer, and a model describing the layer thickness with the chosen variables was proposed. A morphology change from nanowires at the mildest synthesis conditions to nanoribbons at the most severe ones was observed (see Supplementary Material for graphical abstract).


2002 ◽  
Vol 719 ◽  
Author(s):  
Myoung-Woon Moon ◽  
Kyang-Ryel Lee ◽  
Jin-Won Chung ◽  
Kyu Hwan Oh

AbstractThe role of imperfections on the initiation and propagation of interface delaminations in compressed thin films has been analyzed using experiments with diamond-like carbon (DLC) films deposited onto glass substrates. The surface topologies and interface separations have been characterized by using the Atomic Force Microscope (AFM) and the Focused Ion Beam (FIB) imaging system. The lengths and amplitudes of numerous imperfections have been measured by AFM and the interface separations characterized on cross sections made with the FIB. Chemical analysis of several sites, performed using Auger Electron Spectroscopy (AES), has revealed the origin of the imperfections. The incidence of buckles has been correlated with the imperfection length.


Author(s):  
Becky Holdford

Abstract On mechanically polished cross-sections, getting a surface adequate for high-resolution imaging is sometimes beyond the analyst’s ability, due to material smearing, chipping, polishing media chemical attack, etc.. A method has been developed to enable the focused ion beam (FIB) to re-face the section block and achieve a surface that can be imaged at high resolution in the scanning electron microscope (SEM).


Author(s):  
Srikanth Perungulam ◽  
Scott Wills ◽  
Greg Mekras

Abstract This paper illustrates a yield enhancement effort on a Digital Signal Processor (DSP) where random columns in the Static Random Access Memory (SRAM) were found to be failing. In this SRAM circuit, sense amps are designed with a two-stage separation and latch sequence. In the failing devices the bit line and bit_bar line were not separated far enough in voltage before latching got triggered. The design team determined that the sense amp was being turned on too quickly. The final conclusion was that a marginal sense amp design, combined with process deviations, would result in this type of failure. The possible process issues were narrowed to variations of via resistances on the bit and bit_bar lines. Scanning Electron Microscope (SEM) inspection of the the Focused Ion Beam (FIB) cross sections followed by Transmission Electron Microscopy (TEM) showed the presence of contaminants at the bottom of the vias causing resistance variations.


Author(s):  
Qi Chen ◽  
W. D. Griffiths

AbstractIn this work, Mo was added into Al melt to reduce the detrimental effect of double-oxide film defect. An air bubble was trapped in a liquid metal (2L99), served as an analogy for double-oxide film defect in aluminum alloy castings. It was found that the addition of Mo significantly accelerated the consumption of the entrapped bubble by 60 pct after holding for 1 hour. 2 sets of testbar molds were then cast, with 2L99 and 2L99+Mo alloy, with a badly designed running system, intended to deliberately introduce double oxide film defects into the liquid metal. Tensile testing showed that, with the addition of Mo, the Weibull modulus of the Ultimate Tensile Strength and pct Elongation was increased by a factor of 2.5 (from 9 to 23) and 2 (from 2.5 to 4.5), respectively. The fracture surface of 2L99+Mo alloy testbars revealed areas of nitrides contained within bi-film defects. Cross-sections through those defects by Focused Ion Beam milling suggested that the surface layer were permeable, which could be as thick as 30 μm, compared to around 500 nm for the typical oxide film thickness. Transmission Electron Microscopy analysis suggested that the nitride-containing layer consisted of nitride particles as well as spinel phase of various form. The hypothesis was raised that the permeability of the nitride layers promote the reaction between the entrapped atmosphere in the defect and the surrounding liquid metal, reducing the defect size and decreasing their impact on mechanical properties.


Ceramics ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 568-577 ◽  
Author(s):  
Frigan ◽  
Chevalier ◽  
Zhang ◽  
Spies

The market share of zirconia (ZrO2) dental implants is steadily increasing. This material comprises a polymorphous character with three temperature-dependent crystalline structures, namely monoclinic (m), tetragonal (t) and cubic (c) phases. Special attention is given to the tetragonal phase when maintained in a metastable state at room temperature. Metastable tetragonal grains allow for the beneficial phenomenon of Phase Transformation Toughening (PTT), resulting in a high fracture resistance, but may lead to an undesired surface transformation to the monoclinic phase in a humid environment (low-temperature degradation, LTD, often referred to as ‘ageing’). Today, the clinical safety of zirconia dental implants by means of long-term stability is being addressed by two international ISO standards. These standards impose different experimental setups concerning the dynamic fatigue resistance of the final product (ISO 14801) or the ageing behavior of a standardized sample (ISO 13356) separately. However, when evaluating zirconia dental implants pre-clinically, oral environmental conditions should be simulated to the extent possible by combining a hydrothermal treatment and dynamic fatigue. For failure analysis, phase transformation might be quantified by non-destructive techniques, such as X-Ray Diffraction (XRD) or Raman spectroscopy, whereas Scanning Electron Microscopy (SEM) of cross-sections or Focused Ion Beam (FIB) sections might be used for visualization of the monoclinic layer growth in depth. Finally, a minimum load should be defined for static loading to fracture. The purpose of this communication is to contribute to the current discussion on how to optimize the aforementioned standards in order to guarantee clinical safety for the patients.


2000 ◽  
Vol 8 (2) ◽  
pp. 36-39
Author(s):  
Clive Chandler

Control of layer thickness is critically important in the manufacture of semiconductor devices. Cross-sectioning exposes device structures for direct examination but conventional sample preparation procedures are difficult, time consuming, and grossly destructive. Cross sections created by focused ion beam (FIB) milling are easier, faster, and less destructive but have not offered the clear layer delineation provided by etching in the conventional sample preparation process. A new gas etch capability (Delineation Etch™ from FEI Company) offers results that are equivalent to conventional wet-etch preparations in a fraction of the time from a single, automated system in the fab without destroying the wafer. The new etch process also has application in milling high-aspect-ratio holes to create contacts to buried metal layers, and in deprocessing devices to reveal silicon and polysilicon structures.


CORROSION ◽  
10.5006/3881 ◽  
2021 ◽  
Author(s):  
Zachary Karmiol ◽  
Dev Chidambaram

This work investigates the oxidation of a nickel based superalloy, namely Alloy X, in water at elevated temperatures: subcritical water at 261°C and 27 MPa, the transition between subcritical and supercritical water at 374°C and 27 MPa, and supercritical water at 380°C and 27 MPa for 100 hours. The morphology of the sample surfaces were studied using scanning electron microscopy coupled with focused ion beam milling, and the surface chemistry was investigated using X-ray diffraction, Raman spectroscopy, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy before and after exposure studies. Surfaces of all samples were identified to comprise of a ferrite spinel containing aluminum.


2013 ◽  
Vol 19 (4) ◽  
pp. 1080-1091 ◽  
Author(s):  
Felipe Rivera ◽  
Robert Davis ◽  
Richard Vanfleet

AbstractTransmission electron microscopy (TEM) and focused ion beam (FIB) are proven tools to produce site-specific samples in which to study devices from initial processing to causes for failure, as well as investigating the quality, defects, interface layers, etc. However, the use of polymer substrates presents new challenges, in the preparation of suitable site-specific TEM samples, which include sample warping, heating, charging, and melting. In addition to current options that address some of these problems such as cryo FIB, we add an alternative method and FIB sample geometry that address these challenges and produce viable samples suitable for TEM elemental analysis. The key feature to this approach is a larger than usual lift-out block into which small viewing windows are thinned. Significant largely unthinned regions of the block are left between and at the base of the thinned windows. These large unthinned regions supply structural support and thermal reservoirs during the thinning process. As proof-of-concept of this sample preparation method, we also present TEM elemental analysis of various thin metallic films deposited on patterned polycarbonate, lacquer, and poly-di-methyl-siloxane substrates where the pattern (from low- to high-aspect ratio) is preserved.


Sign in / Sign up

Export Citation Format

Share Document