scholarly journals Experimental Study on the Compaction Characteristics and Evaluation Method of Coarse-Grained Materials for Subgrade

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6972
Author(s):  
Shanzhen Li ◽  
Yangsheng Ye ◽  
Liang Tang ◽  
Degou Cai ◽  
Shuang Tian ◽  
...  

Coarse-grained materials are widely used in high-speed railway construction, and it is of great significance to research its compaction characteristics due to the high quality control requirements. In this regard, a field compaction experiment was conducted at a subgrade near Bazhou Station of Beijing-Xiong’an Intercity Railway. The test results of the compaction effect were presented in this study at first. The roller-integrated compaction measurements (i.e., compaction meter value, CMV) were compared with several traditional in-situ tests (i.e., plate load test, light falling weight deflectometer test, and shear wave velocity test). Then the stability of CMV was evaluated by the proposed δ criterion. The spatial uniformity of compaction was further investigated. Based on the analysis, the target value of CMV was preliminarily determined. It showed that Evd was more variable than CMV. The results convincingly indicated that the compaction parameters increased with the increasing number of roller passes at first. A further increase in compaction effort could result in the decompaction of material when the compaction number up to a certain value. The stability analysis method proposed in this study showed its potency of quantifying the percentage of areas with acceptable compaction. The geostatistical analysis could reflect the spatial uniformity of compaction. Overall, the conducted study could provide a useful reference for geo-material compaction control in the transportation engineering.

2013 ◽  
Vol 438-439 ◽  
pp. 1108-1111 ◽  
Author(s):  
Ya Bing Huang ◽  
Yan Jun Li ◽  
Tan Jiao

As an important factor that affects the compaction characteristics of the coarse grained fillers in the high speed railway subgrade, the grain composition is characterized by the application of the fractal theory. Several types of the coarse grained fillers were selected for testing and the results indicated that the relationship actually exists between the compaction characteristics and the fractal dimensions. The variation law of the maximum dry density fluctuating with the quality fractal dimension was analyzed and the results were supposed to estimate the compaction characteristics of the coarse grained fillers.


2021 ◽  
Vol 283 ◽  
pp. 01047
Author(s):  
Qun Luo ◽  
Tianlong Zhao

The study on deformation characteristics of structural plane is the research foundation of structural plane mechanics and hydraulics. In this paper, a calculation method for dynamic evaluation of the stability of slope controlled by structural plane based on deformation characteristics was proposed on the basis of shear reinforcement three-fold line constitutive model, and it was applied to the example of Raytheon landslide in Chongqing-Guizhou high-speed railway. By comparison, the calculated results were in good agreement with the measured displacement results, and the displacement development process of the dangerous rock mass can be well simulated, thus verifying the feasibility and engineering practicality of the method.


2020 ◽  
Vol 10 (19) ◽  
pp. 6741
Author(s):  
Myungjae Lee ◽  
Mintaek Yoo ◽  
Hyun-Seok Jung ◽  
Ki Hyun Kim ◽  
Il-Wha Lee

In this study, for the establishment of a safety evaluation method, non-destructive tests were performed by developing a full-scale model pier and simulating scour on the ground adjacent to a field pier. The surcharge load (0–250 kN) was applied to the full-scale model pier to analyze the load’s effect on the stability. For analyzing the pier’s behavior according to the impact direction, an impact was applied in the bridge axis direction, pier length direction, and pier’s outside direction. The impact height corresponded to the top of the pier. A 1-m deep scour was simulated along one side of the ground, which was adjacent to the pier foundation. The acceleration was measured using accelerometers when an impact was applied. The natural frequency, according to the impact direction and surcharge load, was calculated using a fast Fourier transform (FFT). In addition, the first mode (vibratory), second mode (vibratory), and third modes (torsion) were analyzed according to the pier behavior using the phase difference, and the effect of the scour occurrence on the natural frequency was analyzed. The first mode was most affected by the surcharge load and scour. The stability of the pier can be determined using the second mode, and the direction of the scour can be determined using the third mode.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


Author(s):  
Nikolai Petrov ◽  
Nikolai Petrov ◽  
Inna Nikonorova ◽  
Inna Nikonorova ◽  
Vladimir Mashin ◽  
...  

High-speed railway "Moscow-Kazan" by the draft crosses the Volga (Kuibyshev reservoir) in Chuvashia region 500 m below the village of New Kushnikovo. The crossing plot is a right-bank landslide slope with a stepped surface. Its height is 80 m; the slope steepness -15-16o. The authors should assess the risk of landslides and recommend anti-landslide measures to ensure the safety of the future bridge. For this landslide factors have been analyzed, slope stability assessment has been performed and recommendations have been suggested. The role of the following factors have been analyzed: 1) hydrologic - erosion and abrasion reservoir and runoff role; 2) lithologyc (the presence of Urzhum and Northern Dvina horizons of plastically deformable rocks, displacement areas); 3) hydrogeological (the role of perched, ground and interstratal water); 4) geomorphological (presence of the elemental composition of sliding systems and their structure in the relief); 5) exogeodynamic (cycles and stages of landslide systems development, mechanisms and relationship between landslide tiers of different generations and blocks contained in tiers). As a result 6-7 computational models at each of the three engineering-geological sections were made. The stability was evaluated by the method “of the leaning slope”. It is proved that the slope is in a very stable state and requires the following measures: 1) unloading (truncation) of active heads blocks of landslide tiers) and the edge of the plateau, 2) regulation of the surface and groundwater flow, 3) concrete dam, if necessary.


2019 ◽  
Vol 12 (4) ◽  
pp. 339-349
Author(s):  
Junguo Wang ◽  
Daoping Gong ◽  
Rui Sun ◽  
Yongxiang Zhao

Background: With the rapid development of the high-speed railway, the dynamic performance such as running stability and safety of the high-speed train is increasingly important. This paper focuses on the dynamic performance of high-speed Electric Multiple Unit (EMU), especially the dynamic characteristics of the bogie frame and car body. Various patents have been discussed in this article. Objective: To develop the Multi-Body System (MBS) model of EMU, verify whether the dynamic performance meets the actual operation requirements, and provide some useful information for dynamics and structural design of the proposed EMU. Methods: According to the technical characteristics of a typical EMU, a MBS model is established via SIMPACK, and the measured data of China high-speed railway is taken as the excitation of track random irregularity. To test the dynamic performance of the EMU, including the stability and safety, some evaluation indexes such as wheel-axle lateral forces, wheel-axle lateral vertical forces, derailment coefficients and wheel unloading rates are also calculated and analyzed in detail. Results: The MBS model of EMU has better dynamic performance especially curving performance, and some evaluation indexes of the stability and safety have also reached China’s high-speed railway standards. Conclusion: The effectiveness of the proposed MBS model is verified, and the dynamic performance of the MBS model can meet the design requirements of high-speed EMU.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


Author(s):  
K. Bobzin ◽  
M. Öte ◽  
M. A. Knoch ◽  
I. Alkhasli ◽  
H. Heinemann

AbstractIn plasma spraying, instabilities and fluctuations of the plasma jet have a significant influence on the particle in-flight temperatures and velocities, thus affecting the coating properties. This work introduces a new method to analyze the stability of plasma jets using high-speed videography. An approach is presented, which digitally examines the images to determine the size of the plasma jet core. By correlating this jet size with the acquisition time, a time-dependent signal of the plasma jet size is generated. In order to evaluate the stability of the plasma jet, this signal is analyzed by calculating its coefficient of variation cv. The method is validated by measuring the known difference in stability between a single-cathode and a cascaded multi-cathode plasma generator. For this purpose, a design of experiment, covering a variety of parameters, is conducted. To identify the cause of the plasma jet fluctuations, the frequency spectra are obtained and subsequently interpreted by means of the fast Fourier transformation. To quantify the significance of the fluctuations on the particle in-flight properties, a new single numerical parameter is introduced. This parameter is based on the fraction of the time-dependent signal of the plasma jet in the relevant frequency range.


Sign in / Sign up

Export Citation Format

Share Document