scholarly journals Synaptic Transistors Exhibiting Gate-Pulse-Driven, Metal-Semiconductor Transition of Conduction

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7508
Author(s):  
Jung Wook Lim ◽  
Su Jae Heo ◽  
Min A. Park ◽  
Jieun Kim

Neuromorphic devices have been investigated extensively for technological breakthroughs that could eventually replace conventional semiconductor devices. In contrast to other neuromorphic devices, the device proposed in this paper utilizes deep trap interfaces between the channel layer and the charge-inducing dielectrics (CID). The device was fabricated using in-situ atomic layer deposition (ALD) for the sequential deposition of the CID and oxide semiconductors. Upon the application of a gate bias pulse, an abrupt change in conducting states was observed in the device from the semiconductor to the metal. Additionally, numerous intermediate states could be implemented based on the number of cycles. Furthermore, each state persisted for 10,000 s after the gate pulses were removed, demonstrating excellent synaptic properties of the long-term memory. Moreover, the variation of drain current with cycle number demonstrates the device’s excellent linearity and symmetry for excitatory and inhibitory behaviors when prepared on a glass substrate intended for transparent devices. The results, therefore, suggest that such unique synaptic devices with extremely stable and superior properties could replace conventional semiconducting devices in the future.

2021 ◽  
Vol 13 (13) ◽  
pp. 15761-15773
Author(s):  
Maxime Hallot ◽  
Borja Caja-Munoz ◽  
Clement Leviel ◽  
Oleg I. Lebedev ◽  
Richard Retoux ◽  
...  

2009 ◽  
Vol 1156 ◽  
Author(s):  
Sun Kyung Park ◽  
K. Roodenko ◽  
Yves J. Chabal ◽  
L. Wielunski ◽  
R. Kanjolia ◽  
...  

AbstractAtomic Layer deposition of thin Ruthenium films has been studied using a newly synthesized precursor (Cyclopentadienyl ethylruthenium dicarbonyl) and O2 as reactant gases. Under our experimental conditions, the film comprises both Ru and RuO2. The initial growth is dominated by Ru metal. As the number of cycles is increased, RuO2 appears. From infrared broadband absorption measurements, the transition from isolated, nucleated film to a continuous, conducting film (characterized by Drude absorption) can be determined. Optical simulations based on an effective-medium approach are implemented to simulate the in-situ broadband infrared absorption. A Lorentz oscillator model is developed, together with a Drude term for the metallic component, to describe optical properties of Ru/RuO2 growth.


MRS Advances ◽  
2016 ◽  
Vol 1 (20) ◽  
pp. 1401-1409 ◽  
Author(s):  
Gabriela B. Barin ◽  
Antonio G. Souza Filho ◽  
Ledjane S. Barreto ◽  
Jing Kong

ABSTRACTFabrication of graphene nanostructures it is important for both investigating their intrinsic physical properties and applying them into various functional devices. In this work we present a study on atomic layer deposition (ALD) of Al2O3 to produce patterned graphene through area-selective chemical vapor deposition (CVD) growth. A systematic parametric study was conducted to determine how the number of cycles and the purging time affect the morphology and the electrical properties of both graphene and Al2O3 layers.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 266 ◽  
Author(s):  
Soong Kim ◽  
Byeong Cha ◽  
Shahid Saqlain ◽  
Hyun Seo ◽  
Young Kim

In this article, the structural and chemical properties of heterogeneous catalysts prepared by atomic layer deposition (ALD) are discussed. Oxide shells can be deposited on metal particles, forming shell/core type catalysts, while metal nanoparticles are incorporated into the deep inner parts of mesoporous supporting materials using ALD. Both structures were used as catalysts for the dry reforming of methane (DRM) reaction, which converts CO2 and CH4 into CO and H2. These ALD-prepared catalysts are not only highly initially active for the DRM reaction but are also stable for long-term operation. The origins of the high catalytic activity and stability of the ALD-prepared catalysts are thoroughly discussed.


Author(s):  
C. James ◽  
R. Xu ◽  
G. Jursich ◽  
C.G. Takoudis

Solid oxide fuel cells (SOFCs) are an intriguing renewable energy source. Most SOFCs operate at high temperatures, around 1000 °C. One of the problems with them operating at lower temperatures is that it increases the resistance in the electrolyte layer. The focus of this project is to increase the efficiency of the electrolyte layer at the lower temperatures by decreasing the thickness of the electrolyte layer, in order to decrease the ionic resistance. Atomic layer deposition (ALD) was used to deposit zirconium oxide, which is one of the promising components of electrolytes in small length scale fuel cells; the zirconium precursor was Tris(dimethylamino)cyclopentadienylZirconium (ZyALD) and the oxidant was 0.1 % O3 in O2. Spectroscopic ellipsometry was used to measure the thickness of the samples was. This paper also describes how ALD was used to vary the thickness from 32 Å to 135 Å. Our results showed that there was a constant growth rate of 0.87 ± 0.04 Å/cycle, which can be used to control the film thickness. The error was calculated by taking the standard deviation of the growth rates for a varied number of cycles that were run.


RSC Advances ◽  
2016 ◽  
Vol 6 (105) ◽  
pp. 103692-103699 ◽  
Author(s):  
Maryline Nasr ◽  
Roman Viter ◽  
Cynthia Eid ◽  
Fabienne Warmont ◽  
Roland Habchi ◽  
...  

Based on the Kirkendall effect, novel double, triple and quadruple co-centric nanotubes of ZnO/ZnAl2O4 have been successfully fabricated by combining the two techniques of electrospinning and atomic layer deposition.


Sign in / Sign up

Export Citation Format

Share Document