scholarly journals Effect of pH-Regulation on the Capture of Lipopolysaccharides from E. coli EH100 by Four-Antennary Oligoglycines in Aqueous Medium

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7659
Author(s):  
Anna Y. Gyurova ◽  
Kaloyan Berberov ◽  
Alexander Chinarev ◽  
Ljubomir Nikolov ◽  
Daniela Karashanova ◽  
...  

Bacterial lipopolysaccharides (LPS) are designated as endotoxins, because they cause fever and a wide range of pathologies in humans. It is important to develop effective methodologies to detect trace quantities of LPS in aqueous systems. The present study develops a fine-tuning procedure for the entrapment of trace quantities of LPS from E. coli EH100. The capture agents are self-assemblies (tectomers) formed by synthetic four-antennary oligoglycine (C-(CH2-NH-Gly7)4, T4). Based on previously performed investigations of bulk and adsorption-layer properties of aqueous solutions containing T4 and LPS, the optimal conditions for the entrapment interactions are further fine-tuned by the pH regulation of aqueous systems. A combined investigation protocol is developed, including dynamic light scattering, profile analysis tensiometry, microscopic thin-liquid-film techniques, and transmission electron microscopy. The key results are: (1) two types of complexes between T4 and LPS are generated—amphiphilic species and “sandwich-like” hydrophilic entities; the complexes are smaller at lower pH, and larger at higher pH; (2) an optimum range of pH values is established within which the whole quantity of the LPS is entrapped by the tectomers, namely pH = 5.04–6.30. The obtained data substantiate the notion that T4 may be used for an effective capture and the removal of traces of endotoxins in aqueous systems.

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 266
Author(s):  
Shaked Eliyahu ◽  
Alexandra Galitsky ◽  
Esther Ritov ◽  
Havazelet Bianco-Peled

We developed and characterized a new hydrogel system based on the physical and chemical interactions of pectin partially modified with thiol groups and chitosan modified with acrylate end groups. Gelation occurred at high pectin thiol ratios, indicating that a low acrylated chitosan concentration in the hydrogel had a profound effect on the cross-linking. Turbidity, Fourier transform infrared spectroscopy, and free thiol determination analyses were performed to determine the relationships of the different bonds inside the gel. At low pH values below the pKa of chitosan, more electrostatic interactions were formed between opposite charges, but at high pH values, the Michael-type addition reaction between acrylate and thiol took place, creating harder hydrogels. Swelling experiments and Young’s modulus measurements were performed to study the structure and properties of the resultant hydrogels. The nanostructure was examined using small-angle X-ray scattering. The texture profile analysis showed a unique property of hydrogel adhesiveness. By implementing changes in the preparation procedure, we controlled the hydrogel properties. This hybrid hydrogel system can be a good candidate for a wide range of biomedical applications, such as a mucosal biomimetic surface for mucoadhesive testing.


2003 ◽  
Vol 185 (4) ◽  
pp. 1236-1244 ◽  
Author(s):  
Katia Herz ◽  
Sophie Vimont ◽  
Etana Padan ◽  
Patrick Berche

ABSTRACT Vibrio cholerae, the causative agent of cholera, is a normal inhabitant of aquatic environments, where it survives in a wide range of conditions of pH and salinity. In this work, we investigated the role of three Na+/H+ antiporters on the survival of V. cholerae in a saline environment. We have previously cloned the Vc-nhaA gene encoding the V. cholerae homolog of Escherichia coli. Here we identified two additional antiporter genes, designated Vc-nhaB and Vc-nhaD, encoding two putative proteins of 530 and 477 residues, respectively, highly homologous to the respective antiporters of Vibrio species and E. coli. We showed that both Vc-NhaA and Vc-NhaB confer Na+ resistance and that Vc-NhaA displays an antiport activity in E. coli, which is similar in magnitude, kinetic parameters, and pH regulation to that of E. coli NhaA. To determine the roles of the Na+/H+ antiporters in V. cholerae, we constructed nhaA, nhaB, and nhaD mutants (single, double, and triple mutants). In contrast to E. coli, the inactivation of the three putative antiporter genes (Vc-nhaABD) in V. cholerae did not alter the bacterial exponential growth in the presence of high Na+ concentrations and had only a slight effect in the stationary phase. In contrast, a pronounced and similar Li+-sensitive phenotype was found with all mutants lacking Vc-nhaA during the exponential phase of growth and also with the triple mutant in the stationary phase of growth. By using 2-n-nonyl-4-hydroxyquinoline N-oxide, a specific inhibitor of the electron-transport-linked Na+ pump NADH-quinone oxidoreductase (NQR), we determined that in the absence of NQR activity, the Vc-NhaA Na+/H+ antiporter activity becomes essential for the resistance of V. cholerae to Na+ at alkaline pH. Since the ion pump NQR is Na+ specific, we suggest that its activity masks the Na+/H+ but not the Li+/H+ antiporter activities. Our results indicate that the Na+ resistance of the human pathogen V. cholerae requires a complex molecular system involving multiple antiporters and the NQR pump.


Author(s):  
Collins Njie Ateba ◽  
Muyiwa Ajoke Akindolire

Bacteriophages can provide alternative measures for the control of E. coli O157:H7 that is currently an emerging food-borne pathogen of severe public health concern. This study was aimed at characterising E. coli O157:H7 specific phages as potential biocontrol agents for these pathogens. Fifteen phages were isolated and screened against 69 environmental E. coli O157:H7. Only 3 phages displayed broad lytic spectra against environmental shiga toxin-producing E. coli O157:H7 strains. These 3 lytic phages were designated V3, V7 and V8. Subsequent characterization indicated that they displayed very high degree of similarities despite isolation from different locations. Transmission Electron microscopy (TEM) of the phages revealed that they all had isometric heads of about 73 – 77 nm in diameter and short tails ranging from 20 - 25 nm in diameter. Phages V3, V7 and V8 were assigned to the family Podoviridae based on their morphology. Pulsed field gel electrophoresis (PFGE) genome estimation of the 3 phages demonstrated identical genome sizes of ~ 69 nm. The latent periods of these phages were 20 min, 15 min, and 20 min for V3, V7 and V8 respectively while the burst sizes were 374, 349 and 419 PFU/ infected cell respectively. While all the phages were relatively stable over a wide range of salinity, temperatures and pH values, their range of infectivity or lytic profile was rather narrow on environmental E. coli O157:H7 strains isolated from cattle faeces. This study showed that the Podoviridae bacteriophages are the dominant E. coli O57:H7-infecting phages harboured in cattle faeces in the North-West Province of South Africa and due to their favourable characteristics can be exploited in the formulation of phage cocktails for the bio-control of E. coli O157:H7 in meat and other meat products.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 584
Author(s):  
Lam Van Tan ◽  
Thanh Tran ◽  
Van Doan Thi

Silver nanoparticles (AgNPs) find a wide range of use in many fields, and the biosynthesis of AgNPs via biological routines has recently gained currency. In this study, Bacillus licheniformis TT01 strain was isolated from quail feces collected in Vietnam and evaluated for its ability to synthesize AgNPs. Through visual confirmation and ultraviolet and visible (UV–Vis) spectrum analysis, we found that the biosynthesis of AgNPs was realized in the process in which biomass of B. licheniformis TT01 was incubated with AgNO3 solution. Obtained AgNPs were then assayed for antibacterial activity against three species of bacteria, namely Escherichia coli, Bacillus cereus and Ralstoniasolanacearum, showing better inhibitory action than the AgNO3 solution and the bacterial extracellular fluid. The minimum inhibitory concentration (MIC) of AgNP solution was 206 ppm against E. coli and R. solanacearum and 343.3 against B. cereus. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed that the obtained AgNPs had a spherical shape and sizes ranging from 2 to 22 nm, in which particles from 2 to 10 nm appeared with the highest frequency.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


Author(s):  
T.W. Smith ◽  
J.A. Roberts ◽  
B.J. Martin

Chronic pyelonephritis is one of the most common diseases of the kidney and accounts for a sizeable number of cases of renal insufficiency in man, however its pathogenesis requires further elucidation. Transmission electron microscopy may serve as a uniquely effective means of observing details of the nature of this disease. The present paper describes preliminary results of an ultrastructural study of chronic pyelonephritis in Macaca arctoides (stumptail monkey).The infection was induced in these experiments in a retrograde fashion by means of a unilateral catheterization of the left ureter whereby an innoculum of 10 cc of broth containing approximately 2 billion E. coli per cc and radio-opaque dye were injected under pressure (mimicing vesico-ureteric reflux).


Author(s):  
J W Steeds

There is a wide range of experimental results related to dislocations in diamond, group IV, II-VI, III-V semiconducting compounds, but few of these come from isolated, well-characterized individual dislocations. We are here concerned with only those results obtained in a transmission electron microscope so that the dislocations responsible were individually imaged. The luminescence properties of the dislocations were studied by cathodoluminescence performed at low temperatures (~30K) achieved by liquid helium cooling. Both spectra and monochromatic cathodoluminescence images have been obtained, in some cases as a function of temperature.There are two aspects of this work. One is mainly of technological significance. By understanding the luminescence properties of dislocations in epitaxial structures, future non-destructive evaluation will be enhanced. The second aim is to arrive at a good detailed understanding of the basic physics associated with carrier recombination near dislocations as revealed by local luminescence properties.


Author(s):  
J.L. Batstone

The development of growth techniques such as metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy during the last fifteen years has resulted in the growth of high quality epitaxial semiconductor thin films for the semiconductor device industry. The III-V and II-VI semiconductors exhibit a wide range of fundamental band gap energies, enabling the fabrication of sophisticated optoelectronic devices such as lasers and electroluminescent displays. However, the radiative efficiency of such devices is strongly affected by the presence of optically and electrically active defects within the epitaxial layer; thus an understanding of factors influencing the defect densities is required.Extended defects such as dislocations, twins, stacking faults and grain boundaries can occur during epitaxial growth to relieve the misfit strain that builds up. Such defects can nucleate either at surfaces or thin film/substrate interfaces and the growth and nucleation events can be determined by in situ transmission electron microscopy (TEM).


Author(s):  
Malcolm Brown ◽  
Reynolds M. Delgado ◽  
Michael J. Fink

While light microscopy has been used to image sub-micron objects, numerous problems with diffraction-limitations often preclude extraction of useful information. Using conventional dark-field and phase contrast light microscopy coupled with image processing, we have studied the following objects: (a) polystyrene beads (88nm, 264nm, and 557mn); (b) frustules of the diatom, Pleurosigma angulatum, and the T-4 bacteriophage attached to its host, E. coli or free in the medium. Equivalent images of the same areas of polystyrene beads and T-4 bacteriophages were produced using transmission electron microscopy.For light microscopy, we used a Zeiss universal microscope. For phase contrast observations a 100X Neofluar objective (N.A.=1.3) was applied. With dark-field, a 100X planachromat objective (N.A.=1.25) in combination with an ultra-condenser (N.A.=1.25) was employed. An intermediate magnifier (Optivar) was available to conveniently give magnification settings of 1.25, 1.6, and 2.0. The image was projected onto the back focal plane of a film or television camera with a Carl Zeiss Jena 18X Compens ocular.


2018 ◽  
Author(s):  
Jiajun Wang ◽  
Jayesh Arun Bafna ◽  
Satya Prathyusha Bhamidimarri ◽  
Mathias Winterhalter

Biological channels facilitate the exchange of small molecules across membranes, but surprisingly there is a lack of general tools for the identification and quantification of transport (i.e., translocation and binding). Analyzing the ion current fluctuation of a typical channel with its constriction region in the middle does not allow a direct conclusion on successful transport. For this, we created an additional barrier acting as a molecular counter at the exit of the channel. To identify permeation, we mainly read the molecule residence time in the channel lumen as the indicator whether the molecule reached the exit of the channel. As an example, here we use the well-studied porin, OmpF, an outer membrane channel from <i>E. coli</i>. Inspection of the channel structure suggests that aspartic acid at position 181 is located below the constriction region (CR) and we subsequently mutated this residue to cysteine, where else cysteine free and functionalized it by covalent binding with 2-sulfonatoethyl methanethiosulfonate (MTSES) or the larger glutathione (GLT) blockers. Using the dwell time as the signal for transport, we found that both mono-arginine and tri-arginine permeation process is prolonged by 20% and 50% respectively through OmpF<sub>E181C</sub>MTSES, while the larger sized blocker modification OmpF<sub>E181C</sub>GLT drastically decreased the permeation of mono-arginine by 9-fold and even blocked the pathway of the tri-arginine. In case of the hepta-arginine as substrate, both chemical modifications led to an identical ‘blocked’ pattern observed by the dwell time of ion current fluctuation of the OmpF<sub>wt</sub>. As an instance for antibiotic permeation, we analyzed norfloxacin, a fluoroquinolone antimicrobial agent. The modulation of the interaction dwell time suggests possible successful permeation of norfloxacin across OmpF<sub>wt</sub>. This approach may discriminate blockages from translocation events for a wide range of substrates. A potential application could be screening for scaffolds to improve the permeability of antibiotics.


Sign in / Sign up

Export Citation Format

Share Document