scholarly journals Preliminary Characterization of a Polycaprolactone-SurgihoneyRO Electrospun Mesh for Skin Tissue Engineering

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 89
Author(s):  
Enes Aslan ◽  
Cian Vyas ◽  
Joel Yupanqui Mieles ◽  
Gavin Humphreys ◽  
Carl Diver ◽  
...  

Skin is a hierarchical and multi-cellular organ exposed to the external environment with a key protective and regulatory role. Wounds caused by disease and trauma can lead to a loss of function, which can be debilitating and even cause death. Accelerating the natural skin healing process and minimizing the risk of infection is a clinical challenge. Electrospinning is a key technology in the development of wound dressings and skin substitutes as it enables extracellular matrix-mimicking fibrous structures and delivery of bioactive materials. Honey is a promising biomaterial for use in skin tissue engineering applications and has antimicrobial properties and potential tissue regenerative properties. This preliminary study investigates a solution electrospun composite nanofibrous mesh based on polycaprolactone and a medical grade honey, SurgihoneyRO. The processing conditions were optimized and assessed by scanning electron microscopy to fabricate meshes with uniform fiber diameters and minimal presence of beads. The chemistry of the composite meshes was examined using Fourier transform infrared spectroscopy and X-ray photon spectroscopy showing incorporation of honey into the polymer matrix. Meshes incorporating honey had lower mechanical properties due to lower polymer content but were more hydrophilic, resulting in an increase in swelling and an accelerated degradation profile. The biocompatibility of the meshes was assessed using human dermal fibroblasts and adipose-derived stem cells, which showed comparable or higher cell metabolic activity and viability for SurgihoneyRO-containing meshes compared to polycaprolactone only meshes. The meshes showed no antibacterial properties in a disk diffusion test due to a lack of hydrogen peroxide production and release. The developed polycaprolactone-honey nanofibrous meshes have potential for use in skin applications.

2018 ◽  
Author(s):  
Antonios Keirouz ◽  
Giuseppino Fortunato ◽  
Anthony Callanan ◽  
Norbert Radacsi

Scaffolds and implants used for tissue engineering need to be adapted for their mechanical properties with respect to their environment within the human body. Therefore, a novel composite for skin tissue engineering is presented by use of blends of Poly(vinylpyrrolidone) (PVP) and Poly(glycerol sebacate) (PGS) were fabricated via the needleless electrospinning technique. The formed PGS/PVP blends were morphologically, thermochemically and mechanically characterized. The morphology of the developed fibers related to the concentration of PGS, with high concentrations of PGS merging the fibers together plasticizing the scaffold. The tensile modulus appeared to be affected by the concentration of PGS within the blends, with an apparent decrease in the elastic modulus of the electrospun mats and an exponential increase of the elongation at break. Ultraviolet (UV) crosslinking of PGS/PVP significantly decreased and stabilized the wettability of the formed fiber mats, as indicated by contact angle measurements. In vitro examination showed good viability and proliferation of human dermal fibroblasts over the period of a week. The present findings provide important insights for tuning the elastic properties of electrospun material by incorporating this unique elastomer, as a promising future candidate for skin substitute constructs.


2015 ◽  
Vol 7 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Nandana Bhardwaj ◽  
Wan Ting Sow ◽  
Dipali Devi ◽  
Kee Woei Ng ◽  
Biman B. Mandal ◽  
...  

Development of highly vascular dermal tissue-engineered skin substitutes with appropriate mechanical properties and cellular cues is in need for significant advancement in the field of dermal reconstruction.


Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
Shima Tavakoli ◽  
Marta A. Kisiel ◽  
Thomas Biedermann ◽  
Agnes S. Klar

The immune system has a crucial role in skin wound healing and the application of specific cell-laden immunomodulating biomaterials emerged as a possible treatment option to drive skin tissue regeneration. Cell-laden tissue-engineered skin substitutes have the ability to activate immune pathways, even in the absence of other immune-stimulating signals. In particular, mesenchymal stem cells with their immunomodulatory properties can create a specific immune microenvironment to reduce inflammation, scarring, and support skin regeneration. This review presents an overview of current wound care techniques including skin tissue engineering and biomaterials as a novel and promising approach. We highlight the plasticity and different roles of immune cells, in particular macrophages during various stages of skin wound healing. These aspects are pivotal to promote the regeneration of nonhealing wounds such as ulcers in diabetic patients. We believe that a better understanding of the intrinsic immunomodulatory features of stem cells in implantable skin substitutes will lead to new translational opportunities. This, in turn, will improve skin tissue engineering and regenerative medicine applications.


2020 ◽  
pp. 088532822096260
Author(s):  
K Mohamed Abudhahir ◽  
R Murugesan ◽  
R Vijayashree ◽  
N Selvamurugan ◽  
Tze-Wen Chung ◽  
...  

This study spots light on combined Wound healing process conjoining blood coagulation, inflammation reduction, proliferation and remodeling of the cells. The objective is to overcome the drawbacks of conventional clinically applied wound dressings such as poor rigidity, porosity, mechanical potency and bactericidal activity. As nosocomial infection is a very common condition at the wound site, bio-adhesive materials with intrinsic antibacterial properties are used in clinical applications. Considering the provenability of Wollastonite [Calcium silicate (CaSiO3)] to regenerate the soft tissues by inducing vascularization and regeneration of fibroblast cells And the antibacterial potentiality of zinc in clinical applications, the present study focuses on synthesis of Zn-Ws particles and evaluation of its antimicrobial and wound healing potentialities towards skin tissue engineering applications. The compositional characterization by EDAS and FT-IR spectral analysis have substantiated the presence of major elements and corresponding band stretching associated with the synthesized particles whereas the particles morphology by SEM images have shown the size of the Ws and Zn-Ws to be 370 nm and 530 nm respectively. From the in vitro studies, skin regenerative potential of Zn-Ws was determined on promoting fibroblast cell (NIH3T3) proliferation by providing better adhesiveness, biocompatibility and cytocompatibility. The antibacterial property of Zn-Ws evaluation by minimum inhibitory concentration (MIC) and zone of inhibition (ZOI) methods against clinical isolates of Gram +Ve and Gram –Ve bacterial strains have confirmed that the addition of Zn has diminished the bacterial growth and also helped in degrading the bacterial biofilms. Thus it is summed up that the process of wound healing is expected to occur with reduced risk of post-injury infections by the presence of zinc-doping on wollastonite for skin tissue application.


RSC Advances ◽  
2017 ◽  
Vol 7 (46) ◽  
pp. 28826-28836 ◽  
Author(s):  
Qiang Zhang ◽  
Qiaoyue Du ◽  
Yanan Zhao ◽  
Feixiang Chen ◽  
Zijian Wang ◽  
...  

Graphene oxide-modified electrospun polyvinyl alcohol nanofibrous scaffolds exhibit good biocompatibility and have potential application in skin tissue engineering.


2019 ◽  
Vol 7 (12) ◽  
pp. 5232-5237 ◽  
Author(s):  
Ying Zhang ◽  
Leihao Lu ◽  
Yuping Chen ◽  
Jie Wang ◽  
Yuyin Chen ◽  
...  

Natural polymer-based wound dressings have gained great attention in skin tissue engineering.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yeganeh Dorri Nokoorani ◽  
Amir Shamloo ◽  
Maedeh Bahadoran ◽  
Hamideh Moravvej

AbstractUsing the skin tissue engineering approach is a way to help the body to recover its lost skin in cases that the spontaneous healing process is either impossible or inadequate, such as severe wounds or burns. In the present study, chitosan/gelatin-based scaffolds containing 0.25, 0.5, 0.75, and 1% allantoin were created to improve the wounds’ healing process. EDC and NHS were used to cross-link the samples, which were further freeze-dried. Different in-vitro methods were utilized to characterize the specimens, including SEM imaging, PBS absorption and degradation tests, mechanical experiments, allantoin release profile assessment, antibacterial assay, and cell viability and adhesion tests. The results indicated that the scaffolds’ average pore sizes were approximately in the range of 390–440 µm, and their PBS uptake amounts were about 1000% to 1250% after being soaked in PBS for 24 h. Around 70% of the specimens were degraded in 6 days, but they were not fully degraded after 21 days. Besides, the samples showed antibacterial activity against S. aureus and E. coli bacteria. In general, the MTT cell viability test indicated that the cells’ density increased slightly or remained the same during the experiment. SEM images of cells seeded on the scaffolds indicated appropriate properties of the scaffolds for cell adhesion.


Author(s):  
Lucie Bacakova ◽  
Julia Pajorova ◽  
Marketa Bacakova ◽  
Anne Skogberg ◽  
Pasi Kallio ◽  
...  

Nanocellulose is cellulose in the form of nanostructures, i.e. features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, e.g. in bacterial cellulose; nanofibers, e.g. in electrospun matrices; nanowhiskers and nanocrystals. These structures can be further assembled into bigger 2D and 3D nano-, micro- and macro-structures, such as nanoplatelets, membranes, films, microparticles and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluonacetobacter), plants (trees, shrubs, herbs), algae (Cladophora) and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology and biomedical applications, e.g. for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.


2016 ◽  
Vol 4 ◽  
pp. 1-14 ◽  
Author(s):  
Alvin Wen Choong Chua ◽  
Yik Cheong Khoo ◽  
Bien Keem Tan ◽  
Kok Chai Tan ◽  
Chee Liam Foo ◽  
...  

Abstract Current advances in basic stem cell research and tissue engineering augur well for the development of improved cultured skin tissue substitutes: a class of products that is still fraught with limitations for clinical use. Although the ability to grow autologous keratinocytes in-vitro from a small skin biopsy into sheets of stratified epithelium (within 3 to 4 weeks) helped alleviate the problem of insufficient donor site for extensive burn, many burn units still have to grapple with insufficient skin allografts which are used as intermediate wound coverage after burn excision. Alternatives offered by tissue-engineered skin dermal replacements to meet emergency demand have been used fairly successfully. Despite the availability of these commercial products, they all suffer from the same problems of extremely high cost, sub-normal skin microstructure and inconsistent engraftment, especially in full thickness burns. Clinical practice for severe burn treatment has since evolved to incorporate these tissue-engineered skin substitutes, usually as an adjunct to speed up epithelization for wound closure and/or to improve quality of life by improving the functional and cosmetic results long-term. This review seeks to bring the reader through the beginnings of skin tissue engineering, the utilization of some of the key products developed for the treatment of severe burns and the hope of harnessing stem cells to improve on current practice.


Sign in / Sign up

Export Citation Format

Share Document