scholarly journals Design of a Motorcycle Steering Damper for a Safer Ride

Machines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 24
Author(s):  
Simone Piantini ◽  
Alessandro Giorgetti ◽  
Niccolò Baldanzini ◽  
Cosimo Monti ◽  
Marco Pierini

Powered-two-wheelers (PTWs) are increasingly popular because of their lower cost compared to cars, and therefore the riders’ exposure risk is increasing. Due to their complex dynamics characterized by high non-linearity and inherent instability, PTWs are more difficult to control compared to four-wheeled vehicles. Wobble is a high-frequency instability mode affecting the steering assembly of the PTW, and which often causes the rider to lose control and crash when it occurs. In this paper, we present the design of a new motorcycle semi-active steering damper integrated into the steering column and utilizing a magnetorheological fluid (MRF) for variable damping torque. An analytical model of the concept was first used to perform the preliminary sizing, followed by concept validation using a 3D FE multiphysics magnetic-fluid analysis. The final innovative design offers several advantages compared to traditional steering dampers: (i) a wide range of adjustable damping torque values, with a multiplication factor up to 10 with a maximum electrical current of 2 A; (ii) total integration into the motorcycle steering column enabled by its axial design and limited radius; (iii) a simple chamber geometry that allows for easy manufacture; (iv) longer seal life due to the absence of direct contact between seals and the MRF.

2004 ◽  
Vol 04 (02) ◽  
pp. L345-L354 ◽  
Author(s):  
Y. HADDAB ◽  
V. MOSSER ◽  
M. LYSOWEC ◽  
J. SUSKI ◽  
L. DEMEUS ◽  
...  

Hall sensors are used in a very wide range of applications. A very demanding one is electrical current measurement for metering purposes. In addition to high precision and stability, a sufficiently low noise level is required. Cost reduction through sensor integration with low-voltage/low-power electronics is also desirable. The purpose of this work is to investigate the possible use of SOI (Silicon On Insulator) technology for this integration. We have fabricated SOI Hall devices exploring the useful range of silicon layer thickness and doping level. We show that noise is influenced by the presence of LOCOS and p-n depletion zones near the edges of the active zones of the devices. A proper choice of SOI technological parameters and process flow leads to up to 18 dB reduction in Hall sensor noise level. This result can be extended to many categories of devices fabricated using SOI technology.


2016 ◽  
Vol 2 (11) ◽  
pp. e1601335 ◽  
Author(s):  
Jorge F. Mejias ◽  
John D. Murray ◽  
Henry Kennedy ◽  
Xiao-Jing Wang

Interactions between top-down and bottom-up processes in the cerebral cortex hold the key to understanding attentional processes, predictive coding, executive control, and a gamut of other brain functions. However, the underlying circuit mechanism remains poorly understood and represents a major challenge in neuroscience. We approached this problem using a large-scale computational model of the primate cortex constrained by new directed and weighted connectivity data. In our model, the interplay between feedforward and feedback signaling depends on the cortical laminar structure and involves complex dynamics across multiple (intralaminar, interlaminar, interareal, and whole cortex) scales. The model was tested by reproducing, as well as providing insights into, a wide range of neurophysiological findings about frequency-dependent interactions between visual cortical areas, including the observation that feedforward pathways are associated with enhanced gamma (30 to 70 Hz) oscillations, whereas feedback projections selectively modulate alpha/low-beta (8 to 15 Hz) oscillations. Furthermore, the model reproduces a functional hierarchy based on frequency-dependent Granger causality analysis of interareal signaling, as reported in recent monkey and human experiments, and suggests a mechanism for the observed context-dependent hierarchy dynamics. Together, this work highlights the necessity of multiscale approaches and provides a modeling platform for studies of large-scale brain circuit dynamics and functions.


2021 ◽  
Author(s):  
Anne M Luescher ◽  
Julian Koch ◽  
Wendelin J Stark ◽  
Robert N Grass

Aerosolized particles play a significant role in human health and environmental risk management. The global importance of aerosol-related hazards, such as the circulation of pathogens and high levels of air pollutants, have led to a surging demand for suitable surrogate tracers to investigate the complex dynamics of airborne particles in real-world scenarios. In this study, we propose a novel approach using silica particles with encapsulated DNA (SPED) as a tracing agent for measuring aerosol distribution indoors. In a series of experiments with a portable setup, SPED were successfully aerosolized, re-captured and quantified using quantitative polymerase chain reaction (qPCR). Position-dependency and ventilation effects within a confined space could be shown in a quantitative fashion achieving detection limits below 0.1 ng particles per m3 of sampled air. In conclusion, SPED show promise for a flexible, cost-effective and low-impact characterization of aerosol dynamics in a wide range of settings.


Author(s):  
B. A. Jujnovich ◽  
D. Cebon

Passive steering systems have been used for some years to control the steering of trailer axles on articulated vehicles. These normally use a “command steer” control strategy, which is designed to work well in steady-state circles at low speeds, but which generates inappropriate steer angles during transient low-speed maneuvers and at high speeds. In this paper, “active” steering control strategies are developed for articulated heavy goods vehicles. These aim to achieve accurate path following for tractor and trailer, for all paths and all normal vehicle speeds, in the presence of external disturbances. Controllers are designed to implement the path-following strategies at low and high speeds, whilst taking into account the complexities and practicalities of articulated vehicles. At low speeds, the articulation and steer angles on articulated heavy goods vehicles are large and small-angle approximations are not appropriate. Hence, nonlinear controllers based on kinematics are required. But at high-speeds, the dynamic stability of control system is compromised if the kinematics-based controllers remain active. This is because a key state of the system, the side-slip characteristics of the trailer, exhibits a sign-change with increasing speeds. The low and high speed controllers are blended together using a speed-dependent gain, in the intermediate speed range. Simulations are conducted to compare the performance of the new steering controllers with conventional vehicles (with unsteered drive and trailer axles) and with vehicles with command steer controllers on their trailer axles. The simulations show that active steering has the potential to improve significantly the directional performance of articulated vehicles for a wide range of conditions, throughout the speed range.


2018 ◽  
Vol 855 ◽  
pp. 43-66 ◽  
Author(s):  
Ke Wu ◽  
Bruno D. Welfert ◽  
Juan M. Lopez

The dynamic response to shear of a fluid-filled square cavity with stable temperature stratification is investigated numerically. The shear is imposed by the constant translation of the top lid, and is quantified by the associated Reynolds number. The stratification, quantified by a Richardson number, is imposed by maintaining the temperature of the top lid at a higher constant temperature than that of the bottom, and the side walls are insulating. The Navier–Stokes equations under the Boussinesq approximation are solved, using a pseudospectral approximation, over a wide range of Reynolds and Richardson numbers. Particular attention is paid to the dynamical mechanisms associated with the onset of instability of steady state solutions, and to the complex and rich dynamics occurring beyond.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dong-Pyo Han ◽  
Gyeong Won Lee ◽  
Sangjin Min ◽  
Dong-Soo Shin ◽  
Jong-In Shim ◽  
...  

Abstract This study aims to elucidate the carrier dynamics behind thermal droop in GaInN-based blue light-emitting diodes (LEDs) by separating multiple physical factors. To this end, first, we study the differential carrier lifetimes (DCLs) by measuring the impedance of a sample LED under given driving-current conditions over a very wide operating temperature range of 300 K–500 K. The measured DCLs are decoupled into radiative carrier lifetime (τR) and nonradiative carrier lifetime (τNR), via utilization of the experimental DCL data, and then very carefully investigated as a function of driving current over a wide range of operating temperatures. Next, to understand the measurement results of temperature-dependent τR and τNR characteristics, thermodynamic analysis is conducted, which enables to look deeply into the temperature-dependent behavior of the carriers. On the basis of the results, we reveal that thermal droop is originated by the complex dynamics of multiple closely interrelated physical factors instead of a single physical factor. In particular, we discuss the inherent cause of accelerated thermal droop with elevated temperature.


2015 ◽  
Vol 23 (11) ◽  
pp. 1792-1808 ◽  
Author(s):  
Mostafa Irannejad ◽  
Abdolreza Ohadi

Squeeze film dampers are widely used to reduce the vibration of rotating systems. Using magnetorheological fluid in these dampers can lead to a variable-damping damper called Magnetorheological Squeeze Film Damper (MRSFD). Magnetorheological fluid viscosity alter under different values of magnetic field. The previous research have widely used long bearing approximation to derive the equations governing the hydrodynamic behavior of MRSFDs. In this paper, the behavior of MRSFDs has been studied using short bearing approximation. Next, the effects of MRSFDs on the dynamic behavior of a flexible rotor have been studied, using finite element method (FEM). Synchronous whirl motion has not been imposed on the system behavior, as an external assumption. Damper pressure distribution and forces, dynamic trajectories, eccentricity and the frequency response of the rotor are tools used to analyze the dynamic behavior of MRSFDs and rotor system. As the results show, it seems to be more precise to use short bearing approximation to analyze dampers with aspect ratios lower than a limit (especially L/D < 1). Furthermore, by controlling electrical current one can control the dynamic behavior of a rotor, to avoid failure and damage. Finally, the whirl motion of the rotor was observed to remain synchronous, even when fluid forces are present.


Author(s):  
Ozgur Baser ◽  
Mehmet Alper Demiray

Next-generation exoskeleton and humanoid robots are expected to behave similar to the human neuro-muscular system to perform stable, flexible, and biomimetic movements. To achieve this goal, the variable stiffness actuators have been widely used in various robots. Using variable damping actuators along with variable stiffness actuators will be extremely beneficial for wide range of stable movements. Magnetorheological (MR) brakes are one of the most promising electromagnetic structures that can provide such variable damping in a relatively small actuator volume. In this paper, we focused on the design, characterization, selection and implementation of T-shaped, inner coil and outer coil multi-pole MR brakes to the ankle of an exoskeleton robot. Analytical models are developed using the magnetic circuit analysis to determine the braking torque. Then, magnetic finite element models are developed and coupled with an optimization algorithm to determine the optimal set of parameters of each MR brake design. Prototypes are manufactured in same size and tested experimentally to characterize the actuators’ torque-to-volume ratio, transient response, hysteresis, torque tracking, energy consumption, and damping performances. The performance comparison of the brakes showed T-shaped multi-pole MR brake design has superior characteristics compared to two other designs. Therefore, T-shaped multi-pole MR brake design is coupled with a variable stiffness actuator and implemented in an ankle joint of an exoskeleton robot and experimentally tested. The results show that the developed new hybrid robot joint is capable of stable movement with a simple control algorithm by changing its stiffness and damping independently.


Author(s):  
Sushrut G. Bapat ◽  
Ashok Midha ◽  
Ashish B. Koli

This paper provides a generalized approach for the design of compliant mechanisms. The paper discusses the implicit uncoupling, between the kinematic and energy/torque equations, enabled by the pseudo-rigid-body model concept, and utilizes it for designing a variety of compliant mechanism types for a wide-range of user specifications. Pseudo-rigid-body four-bar mechanisms, with one to four torsional springs located at the revolute joints, are considered to demonstrate the design methodology. Mechanisms are designed for conventional tasks, such as function, path and motion generation, and path generation with prescribed timing, with energy/torque specified at the precision-positions. State-of-the-art rigid-body synthesis techniques are applied to the pseudo-rigid-body model to satisfy the kinematic requirements. Energy/torque equations are then used to account for the necessary compliance according to the user specifications. The approach utilizes a conventional, simple yet efficient optimization formulation to solve energy/torque equations that allow a designer to i) achieve realistic solutions, ii) specify appropriate energy/torque values, and iii) reduce the sensitivities associated with the ‘synthesis with compliance’ approach. A variety of examples are presented to demonstrate the applicability and effectiveness of the approach. All of the examples are verified with the finite element software ANSYS®.


2010 ◽  
Vol 20 (04) ◽  
pp. 1209-1219 ◽  
Author(s):  
KEHUI SUN ◽  
XIA WANG ◽  
J. C. SPROTT

The dynamics of fractional-order systems have attracted increasing attention in recent years. In this paper, we numerically study the bifurcations and chaotic behaviors in the fractional-order simplified Lorenz system using the time-domain scheme. Chaos does exist in this system for a wide range of fractional orders, both less than and greater than three. Complex dynamics with interesting characteristics are presented by means of phase portraits, bifurcation diagrams and the largest Lyapunov exponent. Both the system parameter and the fractional order can be taken as bifurcation parameters, and the range of existing chaos is different for different parameters. The lowest order we found for this system to yield chaos is 2.62.


Sign in / Sign up

Export Citation Format

Share Document