scholarly journals A Numerical Study on the Crack Development Behavior of Rock-Like Material Containing Two Intersecting Flaws

Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1223 ◽  
Author(s):  
Bing Dai ◽  
Ying Chen ◽  
Guoyan Zhao ◽  
Weizhang Liang ◽  
Hao Wu

It is quite often that rocks contain intersecting cracks. Therefore, crack behavior cannot be completely studied by only considering several isolated, single flaws. To investigate the crack behavior of rock or rock-like material containing intersecting flaws under uniaxial loading, numerical simulations were carried out using parallel bonded-particle models containing two intersecting flaws with different inclination angles (varying β) and different intersection angles (varying αα). The crack propagation processes are analyzed and two typical patterns of linkage are observed between two intersecting flaws: (1) One-tip-linkage that contains three subtypes: Coalescence position near the tip; coalescence position at the flaw, but far away from the tip; coalescence position outside the flaw at a certain distance from the tip; and (2) two-tip-linkage with two subtypes: Straight linkage and arc linkage. The geometries of flaws influence the coalescence type. Moreover, the effects of intersection angle α and inclination angle β on the peak stress, the stress of crack initiation, and the stress of crack coalescence are also investigated in detail.

Author(s):  
Taha Rezzag ◽  
Bassam A. Jubran

Abstract The present study numerically evaluates the influence of hole inclination angle with a hole imperfection on film cooling performance. Here, the hole imperfection due to laser percussion drilling is modelled as a half torus. Three hole inclination angles were investigated: 35°, 45° and 55°. Furthermore, every case was evaluated at three blowing ratios: 0.45, 0.90 and 1.25. Each case is compared to a baseline case where the hole imperfection is absent. The results indicate that the hole inclination angle has a strong influence on the film effectiveness performance when a hole imperfection is present. Centerline effectiveness plots reveal a maximum effectiveness deterioration of 89% for a blowing ratio of 0.90 in the vicinity of the hole exit. Dimensionless temperature contours show that the jet produced in the presence of an imperfection is much more compact causing the counter rotating vortex pair to be closer to each other. This enhances the jet to lift off from the plate.


2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Bang Liu ◽  
Zheming Zhu ◽  
Ruifeng Liu ◽  
Lei Zhou ◽  
Duanying Wan

Radial cracks may exist around tunnel edge, and these cracks may propagate and weaken tunnel stability under nearby blasting operations. In order to study the blast-induced fracture behavior of radial cracks emanating from a tunnel spandrel, a tunnel model containing a spandrel crack (TMCSC) with different inclination angles was proposed in this paper. Crack propagation gauges (CPGs) and strain gauges were used in the experiments to measure crack initiation moment and propagation time. Finite difference models were established by using AUTODYN code to simulate crack propagation behavior and propagation path. ABAQUS code was used to calculate dynamic stress intensity factors (SIFs). The results show that (1) crack inclination angles affect crack initiation angles and crack propagation lengths significantly; (2) critical SIFs of both mode I and mode II decrease gradually with the increase of the crack propagation speed; (3) the dynamic energy release rates vary during crack propagation; and (4) there are “crack arrest points” on the crack propagation paths in which the crack propagation speed is very small.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chunlei Zhang ◽  
Yun Dong ◽  
Ruimin Feng ◽  
Ningbo Peng ◽  
Jihua Zhang ◽  
...  

Few studies have been conducted on the crack propagation law and failure characteristics of coal-rock combined body (CRCB) with prefabricated fissure. A sliding crack model was firstly presented to analyze the failure law of rock with a single fracture and the influence of the inclination angle of the fracture on the strength of the rock. The RFPA numerical models of the CRCB with different inclination angles of prefabricated fracture were then established to simulate the dynamic change process of crack propagation and shear stress of the CRCB with prefabricated fracture under uniaxial compression. The influence of the inclination angle of the fracture in the rock on the fracture expansion and failure characteristics of CRCB was further analyzed based on the acoustic emission data. The results showed that (1) when 2 β = arctan 1 / μ , σ cw takes the minimum value, and crack initiation is most likely to occur; (2) the strength of coal-rock assemblage shows different changing trends with the fracture inclination angle; (3) the secondary cracks of CRCB with prefabricated fracture of 0°, 15°, and 30° initiated and expanded near the tip of the main crack, and the secondary cracks of 45°, 60°, and 75° initiated and expanded from the tip of the main crack; (4) there are three failure modes of CRCB with prefabricated crack, the double-shear failure mode Λ , the tensile-shear composite failure mode along the fracture surface, and the tensile failure mode along the fracture surface; and (5) intact CRCB and CRCB with prefabricated crack when α = 75 ° and α = 90 ° have strong brittleness, and other CRCB with different prefabricated fracture inclination angles show a certain degree of postpeak plasticity. The results on the mechanical properties and damage characteristics of CRCB are of great significance for the safety and efficient mining of deep coal resources.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Huilin Le ◽  
Jihong Wei ◽  
Shaorui Sun ◽  
Wuchao Wang ◽  
Haotian Fan

Grouting is a common method used to fill rock joints to improve the stability and integrity of rock mass in geotechnical engineering, and the filling has been observed to have an effect on crack behavior and mechanical property. To investigate this topic, a numerical study of crack behavior and mechanical property of rock samples with two parallel open flaws or infilled flaws under uniaxial compression was conducted in this research. The smooth joint model was proved to be suitable to simulate the interface between rock material and grout material. The occurrence of shear cracks at the interface between rock material and grout material as well as the occurrence of tensile cracks in the grouting material has been successfully simulated in this research. Numerical results indicate that grouting can reduce the tensile force near the flaws, suppress the generation of tensile cracks, and improve the initiation stress of the sample. The tensile force in the specimens with infilled flaws is smaller than that with open flaws, which lead to the improvement of the peak strength of the sample. Moreover, crack development and mechanical properties of samples are affected by bridge inclination angle and flaw inclination angle.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Dai Bing ◽  
He Guicheng ◽  
Zhang Zhijun

To investigate the crack behaviour of rock or rock-like material in uniaxial loading, a series of numerical simulations were conducted on gypsum specimens containing a single flaw with different inclination angle (0°–90°) and length (10 mm–30 mm). Based on the numerical simulations results, the effect of flaw length on peak strength, the CI stress, and the CD stress were investigated with different inclination angles. The results show that the peak strength decreased initially and then increased with increasing of the flaw angle. Meanwhile, the peak strength decreased gradually when the length of the preexisting flaw increased. When the inclination angle was 30°, 45°, and 60°, the reduction degree of peak strength increased with increasing of the flaw length. The CI stress and CD stress not only depend on the inclination angle but also depend on flaw length. Four types of crack were observed in numerical simulations. The present research facilitates increased understanding of crack behaviour of rock under different conditions.


2018 ◽  
Vol 55 (4) ◽  
pp. 652-657 ◽  
Author(s):  
Gabriel Murariu ◽  
Razvan Adrian Mahu ◽  
Adrian Gabriel Murariu ◽  
Mihai Daniel Dragu ◽  
Lucian P. Georgescu ◽  
...  

This article presents the design of a specific unmanned aerial vehicle UAV prototype own building. Our UAV is a flying wing type and is able to take off with a little boost. This system happily combines some major advantages taken from planes namely the ability to fly horizontal, at a constant altitude and of course, the great advantage of a long flight-time. The aerodynamic models presented in this paper are optimized to improve the operational performance of this aerial vehicle, especially in terms of stability and the possibility of a long gliding flight-time. Both aspects are very important for the increasing of the goals� efficiency and for the getting work jobs. The presented simulations were obtained using ANSYS 13 installed on our university� cluster system. In a next step the numerical results will be compared with those during experimental flights. This paper presents the main results obtained from numerical simulations and the obtained magnitudes of the main flight coefficients.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2690
Author(s):  
Bo Pan ◽  
Xuguang Wang ◽  
Zhenyang Xu ◽  
Lianjun Guo ◽  
Xuesong Wang

The Split Hopkinson Pressure Bar (SHPB) is an apparatus for testing the dynamic stress-strain response of the cement mortar specimen with pre-set joints at different angles to explore the influence of joint attitudes of underground rock engineering on the failure characteristics of rock mass structure. The nuclear magnetic resonance (NMR) has also been used to measure the pore distribution and internal cracks of the specimen before and after the testing. In combination with numerical analysis, the paper systematically discusses the influence of joint angles on the failure mode of rock-like materials from three aspects of energy dissipation, microscopic damage, and stress field characteristics. The result indicates that the impact energy structure of the SHPB is greatly affected by the pre-set joint angle of the specimen. With the joint angle increasing, the proportion of reflected energy moves in fluctuation, while the ratio of transmitted energy to dissipated energy varies from one to the other. NMR analysis reveals the structural variation of the pores in those cement specimens before and after the impact. Crack propagation direction is correlated with pre-set joint angles of the specimens. With the increase of the pre-set joint angles, the crack initiation angle decreases gradually. When the joint angles are around 30°–75°, the specimens develop obvious cracks. The crushing process of the specimens is simulated by LS-DYNA software. It is concluded that the stresses at the crack initiation time are concentrated between 20 and 40 MPa. The instantaneous stress curve first increases and then decreases with crack propagation, peaking at different times under various joint angles; but most of them occur when the crack penetration ratio reaches 80–90%. With the increment of joint angles in specimens through the simulation software, the changing trend of peak stress is consistent with the test results.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bing Sun ◽  
Shun Liu ◽  
Sheng Zeng ◽  
Shanyong Wang ◽  
Shaoping Wang

AbstractTo investigate the influence of the fissure morphology on the dynamic mechanical properties of the rock and the crack propagation, a drop hammer impact test device was used to conduct impact failure tests on sandstones with different fissure numbers and fissure dips, simultaneously recorded the crack growth after each impact. The box fractal dimension is used to quantitatively analyze the dynamic change in the sandstone cracks and a fractal model of crack growth over time is established based on fractal theory. The results demonstrate that under impact test conditions of the same mass and different heights, the energy absorbed by sandstone accounts for about 26.7% of the gravitational potential energy. But at the same height and different mass, the energy absorbed by the sandstone accounts for about 68.6% of the total energy. As the fissure dip increases and the number of fissures increases, the dynamic peak stress and dynamic elastic modulus of the fractured sandstone gradually decrease. The fractal dimensions of crack evolution tend to increase with time as a whole and assume as a parabolic. Except for one fissure, 60° and 90° specimens, with the extension of time, the increase rate of fractal dimension is decreasing correspondingly.


2021 ◽  
Vol 11 (4) ◽  
pp. 1960
Author(s):  
Naming Zhang ◽  
Ziang Wang ◽  
Jinhua Shi ◽  
Shuya Ning ◽  
Yukuo Zhang ◽  
...  

Previous research showed that pulsed functional magnetic stimulation can activate brain tissue with optimum intensity and frequency. Conventional stimulation coils are always set as a figure-8 type or Helmholtz. However, the magnetic fields generated by these coils are uniform around the target, and their magnetic stimulation performance still needs improvement. In this paper, a novel type of stimulation coil is proposed to shrink the irritative zone and strengthen the stimulation intensity. Furthermore, the electromagnetic field distribution is calculated and measured. Based on numerical simulations, the proposed coil is compared to traditional coil types. Moreover, the influential factors, such as the diameter and the intersection angle, are also analyzed. It was demonstrated that the proposed coil has a better performance in comparison with the figure-8 coil. Thus, this work suggests a new way to design stimulation coils for transcranial magnetic stimulation.


Sign in / Sign up

Export Citation Format

Share Document