scholarly journals Crack Propagation Law and Failure Characteristics of Coal-Rock Combined Body with the Different Inclination Angle of Prefabricated Fissure

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Chunlei Zhang ◽  
Yun Dong ◽  
Ruimin Feng ◽  
Ningbo Peng ◽  
Jihua Zhang ◽  
...  

Few studies have been conducted on the crack propagation law and failure characteristics of coal-rock combined body (CRCB) with prefabricated fissure. A sliding crack model was firstly presented to analyze the failure law of rock with a single fracture and the influence of the inclination angle of the fracture on the strength of the rock. The RFPA numerical models of the CRCB with different inclination angles of prefabricated fracture were then established to simulate the dynamic change process of crack propagation and shear stress of the CRCB with prefabricated fracture under uniaxial compression. The influence of the inclination angle of the fracture in the rock on the fracture expansion and failure characteristics of CRCB was further analyzed based on the acoustic emission data. The results showed that (1) when 2 β = arctan 1 / μ , σ cw takes the minimum value, and crack initiation is most likely to occur; (2) the strength of coal-rock assemblage shows different changing trends with the fracture inclination angle; (3) the secondary cracks of CRCB with prefabricated fracture of 0°, 15°, and 30° initiated and expanded near the tip of the main crack, and the secondary cracks of 45°, 60°, and 75° initiated and expanded from the tip of the main crack; (4) there are three failure modes of CRCB with prefabricated crack, the double-shear failure mode Λ , the tensile-shear composite failure mode along the fracture surface, and the tensile failure mode along the fracture surface; and (5) intact CRCB and CRCB with prefabricated crack when α = 75 ° and α = 90 ° have strong brittleness, and other CRCB with different prefabricated fracture inclination angles show a certain degree of postpeak plasticity. The results on the mechanical properties and damage characteristics of CRCB are of great significance for the safety and efficient mining of deep coal resources.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1223 ◽  
Author(s):  
Bing Dai ◽  
Ying Chen ◽  
Guoyan Zhao ◽  
Weizhang Liang ◽  
Hao Wu

It is quite often that rocks contain intersecting cracks. Therefore, crack behavior cannot be completely studied by only considering several isolated, single flaws. To investigate the crack behavior of rock or rock-like material containing intersecting flaws under uniaxial loading, numerical simulations were carried out using parallel bonded-particle models containing two intersecting flaws with different inclination angles (varying β) and different intersection angles (varying αα). The crack propagation processes are analyzed and two typical patterns of linkage are observed between two intersecting flaws: (1) One-tip-linkage that contains three subtypes: Coalescence position near the tip; coalescence position at the flaw, but far away from the tip; coalescence position outside the flaw at a certain distance from the tip; and (2) two-tip-linkage with two subtypes: Straight linkage and arc linkage. The geometries of flaws influence the coalescence type. Moreover, the effects of intersection angle α and inclination angle β on the peak stress, the stress of crack initiation, and the stress of crack coalescence are also investigated in detail.



2014 ◽  
Vol 711 ◽  
pp. 129-132
Author(s):  
Ri Hong Cao ◽  
Ping Cao ◽  
Pi Hua Wen ◽  
Rui Wen Chen

Mechanical behavior and failure mode of jointed rock is one of the significant researches in rock mechanics field. In this work, combined with similar material testing and discrete element numerical method(PFC) to investigate the mechanical behavior and failure mode of the rock-like materials with multi-fissures. The numerical analyses agree well with physical experimentation. It is found that, fissures will weaken the strength of the rock-like material, and when the angle of the fissures is about 25°, the strength of the material reaches a minimum value. The weakening effect of fissure on specimen strength would decrease gradually along with the increase of fissure angle. Compared with the effects of fissure angle, the influence of cracks number to the strength is relatively small. The fissure inclination angle was the main factor of the failure modes. With the different fissure inclination angles, the crack tip of Micro-cracks presents different developmental pattern. However, the influence of fissure distribution density on the failure mode mainly reflects at the fracture penetration mode.



2015 ◽  
Vol 662 ◽  
pp. 221-224
Author(s):  
Jozef Miškuf ◽  
Kornel Csach ◽  
Alena Juríková ◽  
Maria Hurakova ◽  
Martin Miškuf ◽  
...  

We analyzed the failure characteristics of the metallic glass Co43Fe20Ta5.5B31.5 (at.%) deformed in bending. The nanoscale fracture surface morphology respects the micromechanisms of the failure of the amorphous structure. The fracture surfaces consist of nanosized dimples (40 nm) arranged in the lines respecting the periodic corrugation zones oriented perpendicular to the crack propagation direction. The corrugation topology exhibits the point nature of the generation site, the concentric form of the stress waves and their interference.



2020 ◽  
Vol 10 (20) ◽  
pp. 7082
Author(s):  
Yanlong Chen ◽  
Huidong Cui ◽  
Hai Pu ◽  
Peng Wu ◽  
Liang Chen ◽  
...  

Under coupled compression–shear loading, the failure and instability behavior of inclined pillars is different from that of horizontal pillars. To enhance the reliability and accuracy of pillar strength design, the influence of different inclination angles and loading rates on mechanical property and the failure behavior of inclined pillar should be studied. In this paper, the combined compression and shear test (C-CAST) system was developed, and mechanical properties and macro failure behavior of coal samples under different inclination angles and loading rates were studied, and acoustic emission (AE) technology was used to determine the internal cracking mode of the sample. The results show that with the increase of inclination angle, the peak shear stress of coal sample increases gradually, while the peak axial stress and elastic modulus slightly increase first and then decrease, and reach the maximum value at an inclination angle of 5°. Within the inclination angle range of 0°–15°, with the increase of loading rate, the peak axial stress and elastic modulus of coal samples first increase and then decrease, while the loading rate corresponding to peak axial stress and elastic modulus decreases. Within the inclination angle range of 20°–25°, the peak axial stress and elastic modulus of the sample gradually decrease with the increase of loading rate. The failure mode of coal samples changes from tension-splitting failure (0°–5°), tension–shear composite failure (10°) to single shear failure (15°–25°). Meanwhile, the loading rate has little effect on the failure mode of coal samples, but has a significant effect on the failure degree. When the loading rate is 1.0 and 10 mm/min and the inclination angle ranges from 0°–5°, the proportion of tensile crack is significantly greater than that of the shear crack, and tensile failure is the main failure mode; when the inclination angle ranges from 10°–25°, the proportion of shear crack is more than 50% and increases gradually with the increase of inclination angle, and shear failure is the main failure mode. This law is consistent with the macroscopic failure mode of the sample.



2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Liming Yin ◽  
Ming Li ◽  
Wenbin Sun ◽  
Juntao Chen ◽  
Bin Liu ◽  
...  

The rock is a kind of geological medium with damages of different degrees including fissures, faults, joints, and other structural defects. Many underground rock engineering projects, such as mining and tunnel excavation, can break the three-dimensional stress balance state of rock mass and make it subject to two-dimensional or even one-dimensional stress, thus inducing stress concentration which leads to rapid failure. In order to investigate the failure law of the rock mass with such defects under two-dimensional stress, based on the similarity theory, we first prepared rocklike specimens with fissures featuring actual mechanical properties and then systematically analyzed the fissure-tip crack propagation and specimen failure law and mechanical mechanism under two-dimensional stress in view of the stress field theory. The results demonstrate that with the increase of load, the microcracks developed and propagated gradually, during which a number of branch paths were generated from the fissure tips of the specimens; the upper and lower cracks were connected first due to the main crack propagation, forming a sliding surface which caused the failure of the specimens, and the strengths of the specimens also fluctuated according to the different combinations of the fissure dip angles and rock bridge dip angles. In view of acoustic emission (AE), we calculated and obtained the spatial positions of stress peaks in each direction at the fissure tips; through comparison and analysis, the angle corresponding to the negative angle peak of the maximum circumferential tensile stress and the maximum radial tensile stress is basically the same as the angle of the main crack propagation direction generated from the preexisting fissure; it can be inferred that the tensile stress is the main stress inducing crack initiation and specimen failure, which is consistent with the physical characteristics of rock (resistant to compression but not tension). This may serve as a guidance for judging the direction along which new cracks are generated in a rock mass with double structural planes.



Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Zhiwei Wu ◽  
Maosheng Yang ◽  
Kunyu Zhao

The new generation of bearing steel has good comprehensive properties, which can satisfy most of the requirements of bearing steel in a complex environment. In the presented work, fatigue properties of 15Cr14Co12Mo5Ni2 bearing steel have been investigated by means of rotating bending fatigue tests on smooth bar specimens after carburization and heat treatment. Optical microscope, scanning electron microscopy, electron backscatter diffraction, and Image-Pro Plus software were used to analyze the fracture, microstructure, and carbides. The results suggest that the fatigue strength at room temperature and 500 °C is 1027 MPa and 585 MPa, respectively. Scanning electron micrographic observations on the fracture surface of the fatigue specimens at 500 °C show that fatigue cracks usually initiate from voids in the carburized case and oxide layer on the surface of steel. The failure mode in the carburized case is a quasi-cleavage fracture, and with the increase of crack propagation depth, the failure mode gradually changes to fatigue and creep-fatigue interaction. With the increase of the distance from the surface, the size of the martensite block decreases and the fracture surface shows great fluctuation.



Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 200
Author(s):  
Zhongliang Feng ◽  
Xin Chen ◽  
Yu Fu ◽  
Shaoshuai Qing ◽  
Tongguan Xie

The joint arrangement in rock masses is the critical factor controlling the stability of rock structures in underground geotechnical engineering. In this study, the influence of the joint inclination angle on the mechanical behavior of jointed rock masses under uniaxial compression was investigated. Physical model laboratory experiments were conducted on jointed specimens with a single pre-existing flaw inclined at 0°, 30°, 45°, 60°, and 90° and on intact specimens. The acoustic emission (AE) signals were monitored during the loading process, which revealed that there is a correlation between the AE characteristics and the failure modes of the jointed specimens with different inclination angles. In addition, particle flow code (PFC) modeling was carried out to reproduce the phenomena observed in the physical experiments. According to the numerical results, the AE phenomenon was basically the same as that observed in the physical experiments. The response of the pre-existing joint mainly involved three stages: (I) the closing of the joint; (II) the strength mobilization of the joint; and (III) the reopening of the joint. Moreover, the response of the pre-existing joint was closely related to the joint’s inclination. As the joint inclination angle increased, the strength mobilization stage of the joint gradually shifted from the pre-peak stage of the stress–strain curve to the post-peak stage. In addition, the instantaneous drop in the average joint system aperture (aave) in the specimens with medium and high inclination angles corresponded to a rapid increase in the form of the pulse of the AE activity during the strength mobilization stage.



2021 ◽  
pp. 014459872110153
Author(s):  
Qingsong Li ◽  
Jinlei Fu ◽  
Xianwei Heng ◽  
Xiaoqian Xu ◽  
Shu Ma

To study crack propagation around the fracture hole in the coal body induced by high-pressure CO2 gas produced by CO2 phase transition fracturing, the mechanism of permeability enhancement of fractured coal induced by liquid CO2 phase transition fracturing was studied from two aspects, the process of coal gas displacement by competitive adsorption and physical characteristics of fractured coal induced by phase transition. Crack propagation pattern in coal under different lateral coefficients was explored by using discrete-element numerical simulation software. Distribution characteristics of hoop stress of fractured coal were analyzed through theoretical calculation. The results show that: (1) Micro-cracks in damaged coal body generated during phase transition process are mainly crack_tension type, which are formed by the composite action of tension and compression. The crack propagation is the result of the continuous release of compressive stress from concentrated area to the surrounding units. Micro-cracks are radially distributed in a pattern of “flame”. (2) The main crack formed above the fracture hole grows in the direction of vertical minimum initial stress, and the main crack formed below the fracture hole develops in the direction of horizontal initial stress. As the lateral compression coefficient increases, the extension distance of the second crack will not change after reducing to a certain length. (3) As the distance from the fracture hole increases, the peak compression loaded at the monitoring point decays, and the loop stress in the cracked coal is distributed in a pattern of “peanut”. It provides practical methods and ideas for studying the macroscopic and microscopic development of cracks, as well as theoretical support for the on-site hole layout.



2010 ◽  
Vol 97-101 ◽  
pp. 484-487
Author(s):  
Wei Li ◽  
Qiang Li ◽  
Ping Wang

Fatigue crack growth rate (FCGR) test of B grade steel was performed to clarify the probabilistic behavior of crack propagation in near-threshold region and steady-state region. As a result, a crack propagation law considering influence of threshold value and average stress can be well proposed to estimate crack propagation behavior of B grade steel. The estimated value of threshold value ΔKth is 293.65MPamm1/2, approaching the experimental value of ΔKth, about 280.39MPamm1/2. Furthermore, the probabilistic FCGR curves of B grade steel are established from the viewpoint of survival probability and confidence degree, which reflects the influence of scatter regularity of data and sample size on reliability assessment.



Sign in / Sign up

Export Citation Format

Share Document