scholarly journals Mining the Metabolome and the Agricultural and Pharmaceutical Potential of Sea Foam-Derived Fungi

Marine Drugs ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 128 ◽  
Author(s):  
Ernest Oppong-Danquah ◽  
Cristina Passaretti ◽  
Orazio Chianese ◽  
Martina Blümel ◽  
Deniz Tasdemir

Sea foam harbors a diverse range of fungal spores with biological and ecological relevance in marine environments. Fungi are known as the producers of secondary metabolites that are used in health and agricultural sectors, however the potentials of sea foam-derived fungi have remained unexplored. In this study, organic extracts of six foam-derived fungal isolates belonging to the genera Penicillium, Cladosporium, Emericellopsis and Plectosphaerella were investigated for their antimicrobial activity against plant and human pathogens and anticancer activity. In parallel, an untargeted metabolomics study using UPLC-QToF–MS/MS-based molecular networking (MN) was performed to unlock their chemical inventory. Penicillium strains were identified as the most prolific producers of compounds with an average of 165 parent ions per strain. In total, 49 known mycotoxins and functional metabolites were annotated to specific and ubiquitous parent ions, revealing considerable chemical diversity. This allowed the identification of putative new derivatives, such as a new analog of the antimicrobial tetrapeptide, fungisporin. Regarding bioactivity, the Penicillium sp. isolate 31.68F1B showed a strong and broad-spectrum activity against seven plant and human pathogens, with the phytopathogen Magnaporthe oryzae and the human pathogen Candida albicans being the most susceptible (IC50 values 2.2 and 6.3 µg/mL, respectively). This is the first study mining the metabolome of the sea foam-derived fungi by MS/MS-based molecular networking, and assessing their biological activities against phytopathogens.

2020 ◽  
Vol 17 ◽  
Author(s):  
Thaise Martins ◽  
Vera L.M. Silva ◽  
Artur M.S. Silva ◽  
José L.F.C. Lima ◽  
Eduarda Fernandes ◽  
...  

Aims: Evaluate the ability of chalcones to scavenge hypochlorous acid (HOCl) and modulate oxidative burst. Background: The chemistry of chalcones has long been a matter of interest to the scientific community due to the phenolic groups often present and to the various replaceable hydrogens that allow the formation of a broad number of derivatives. Due to this chemical diversity, several biological activities have been attributed to chalcones, namely anti-diabetic, anti-inflammatory and antioxidant. Objectives: Evaluate the ability of a panel of 34 structurally related chalcones to scavenge HOCl and/or suppress its produc-tion through the inhibition of human neutrophils’ oxidative burst, followed by the establishment of the respective structure-activity relationships. Methods: The ability of chalcones to scavenge HOCl was evaluated by fluorimetric detection of the inhibition of dihydro-rhodamine 123 oxidation. The ability of chalcones to inhibit neutrophils’ oxidative burst was evaluated by chemiluminomet-ric detection of the inhibition of luminol oxidation. Results: It was observed that the ability to scavenge HOCl depends on the position and number of hydroxy groups on both aromatic rings. Chalcone 5b was the most active with an IC50 value of 1.0 ± 0.1 μM. The ability to inhibit neutrophils’ oxi-dative burst depends on the presence of a 2’-hydroxy group on A-ring and on other substituents groups, e.g. methoxy, hy-droxy, nitro and/or chlorine atom(s) at C-2, C-3 and/or C-4 on B-ring, as in chalcones 2d, 2f, 2j, 2i, 4b, 2n and 1d, which were the most actives with IC50 values ranging from 0.61 ± 0.02 μM to 1.7 ± 0.2 μM. Conclusion: The studied chalcones showed high activity at a low micromolar range, indicating their potential as antioxidant agents and to be used as a molecular structural scaffold for the design of new anti-inflammatory compounds.


Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 444
Author(s):  
Téo Hebra ◽  
Nicolas Elie ◽  
Salomé Poyer ◽  
Elsa Van Elslande ◽  
David Touboul ◽  
...  

Microorganisms associated with termites are an original resource for identifying new chemical scaffolds or active metabolites. A molecular network was generated from a collection of strain extracts analyzed by liquid chromatography coupled to tandem high-resolution mass spectrometry, a molecular network was generated, and activities against the human pathogens methicillin-resistant Staphylococcus aureus, Candida albicans and Trichophyton rubrum were mapped, leading to the selection of a single active extract of Penicillium sclerotiorum SNB-CN111. This fungal species is known to produce azaphilones, a colorful family of polyketides with a wide range of biological activities and economic interests in the food industry. By exploring the molecular network data, it was shown that the chemical diversity related to the P. sclerotiorum metabolome largely exceeded the data already reported in the literature. According to the described fragmentation pathways of protonated azaphilones, the annotation of 74 azaphilones was proposed, including 49 never isolated or synthesized thus far. Our hypothesis was validated by the isolation and characterization of eight azaphilones, among which three new azaphilones were chlorogeumasnol (63), peniazaphilone E (74) and 7-deacetylisochromophilone VI (80).


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Imane Chamkhi ◽  
Mohamed Hnini ◽  
Jamal Aurag

The Moroccan endemic plant Euphorbia officinarum is a traditional medicinal plant, known locally as “Daghmus.” Plants in the genus Euphorbia are well known for the chemical diversity of their diterpenoids and isoprenoid constituents, which perform many activities such as cytotoxic, antimicrobial, and anti-inflammatory activities, as well as different biological properties, that cannot be overlooked. The effect of bioactive compounds (antiviral, antidiabetic, anticancer, and antioxidant). Euphorbia officinarum is an important conventional medicine for the treatment of various conditions, including skin and ophthalmological diseases. It is also used against human pathogens (intestinal parasites). E. officinarum latex is the major part of the plant used for conventional medicine and synthesizing new bioactive compounds. The characterization and isolation of its components are necessary to exploiting and enhancing its therapeutic potential. However, to the best of our knowledge, no review is available to date. In order to have and define a research question, we adopt a strategy by considering the items of the PRISMA checklist. Therefore, this review aims to cover E. officinarum taxonomy, botanical description, distribution, conventional uses, and phytochemical compounds of this plant, including the biological activities of compounds isolated and of these semisynthesized compounds. This article provides a foundation for any further studies from this plant.


2020 ◽  
Vol 21 (2) ◽  
pp. 90-96 ◽  
Author(s):  
Girish M. Bhopale

Antimicrobial drugs resistant microbes have been observed worldwide and therefore alternative development of antimicrobial peptides has gained interest in human healthcare. Enormous progress has been made in the development of antimicrobial peptide during the last decade due to major advantages of AMPs such as broad-spectrum activity and low levels of induced resistance over the current antimicrobial agents. This review briefly provides various categories of AMP, their physicochemical properties and mechanism of action which governs their penetration into microbial cell. Further, the recent information on current status of antimicrobial peptide development, their applications and perspective in human healthcare are also described.


2020 ◽  
Vol 20 (23) ◽  
pp. 2106-2117
Author(s):  
Martin Krátký ◽  
Šárka Štěpánková ◽  
Michaela Brablíková ◽  
Katarína Svrčková ◽  
Markéta Švarcová ◽  
...  

Background: Hydrazide-hydrazones have been known as scaffold with various biological activities including inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE). Cholinesterase inhibitors are mainstays of dementias’ treatment. Objective: Twenty-five iodinated hydrazide-hydrazones and their analogues were designed as potential central AChE and BuChE inhibitors. Methods: Hydrazide-hydrazones were synthesized from 4-substituted benzohydrazides and 2-/4- hydroxy-3,5-diiodobenzaldehydes. The compounds were investigated in vitro for their potency to inhibit AChE from electric eel and BuChE from equine serum using Ellman’s method. We calculated also physicochemical and structural parameters for CNS delivery. Results: The derivatives exhibited a moderate dual inhibition with IC50 values ranging from 15.1-140.5 and 35.5 to 170.5 μmol.L-1 for AChE and BuChE, respectively. Generally, the compounds produced a balanced or more potent inhibition of AChE. N'-[(E)-(4-Hydroxy-3,5-diiodophenyl)methylidene]-4- nitrobenzohydrazide 2k and 4-fluoro-N'-(2-hydroxy-3,5-diiodobenzyl)benzohydrazide 3a were the most potent inhibitors of AChE and BuChE, respectively. Structure-activity relationships were established, and molecular docking studies confirmed interaction with enzymes. Conclusion: Many novel hydrazide-hydrazones showed lower IC50 values than rivastigmine against AChE and some of them were comparable for BuChE to this drug used for the treatment of dementia. They interact with cholinesterases via non-covalent binding into the active site. Based on the BOILEDEgg approach, the majority of the derivatives met the criteria for blood-brain-barrier permeability.


2020 ◽  
Vol 24 (14) ◽  
pp. 1555-1581
Author(s):  
Garima Tripathi ◽  
Anil Kumar Singh ◽  
Abhijeet Kumar

Among the major class of heterocycles, the N-heterocycles, such as pyrazoles, are scaffolds of vast medicinal values. Various drugs and other biologically active molecules are known to contain these N-heterocycles as core motifs. Specifically, arylpyrazoles have exhibited a diverse range of biological activities, including anti-inflammatory, anticancerous, antimicrobial and various others. For instance, arylpyrazoles are present as core moieties in various insecticides, fungicides and drugs such as Celebrex and Trocoxil. The present review will be highlighting the significant therapeutic importance of pyrazole derivatives developed in the last few years.


2019 ◽  
Vol 16 (8) ◽  
pp. 939-947
Author(s):  
Hakan Bektas ◽  
Canan Albay ◽  
Emre Menteşe ◽  
Bahar Bilgin Sokmen ◽  
Zafer Kurt ◽  
...  

Background:Benzimidazoles and its derivatives have been attracting interest for many years because of their biological activities. Benzimidazoles containing different heterocyclic moieties have wide range of biological activities such as antimicrobial, antioxidant, anticancer, antiviral, etc.Methods:In this study, some benzimidazole derivatives containing furan, oxadiazole, triazole and thiadiazole moieties have been synthesized and then evaluated for their antioxidant and antiurease activities.Results:The results showed that all the tested benzimidazoles indicated remarkable urease inhibitory potentials with IC50 values ranging between 0.303±0.03 to 0.591±0.08 µM.Conclusion:In conclusion, synthesized benzimidazole derivatives showed good antioxidant and antiurease activities. Heterocyclic groups on benzimidazole nucleus enhance the activities.


2020 ◽  
Vol 16 ◽  
Author(s):  
Délis Galvão Guimarães ◽  
Arlan de Assis Gonsalves ◽  
Larissa Araújo Rolim ◽  
Edigênia Cavalcante Araújo ◽  
Victória Laysna dos Anjos Santos ◽  
...  

Background: Natural naphthoquinones have shown diversified biological activities including antibacterial, antifungal, antimalarial, and cytotoxic activities. However, they are also compounds with acute cytotoxicity, immunotoxicity, carcinogenesis, and cardio- and hepatotoxicity, then the modification at their redox center is an interesting strategy to overcome such harmful activity. Objective: In this study, four novel semisynthetic hydrazones, derived from the isomers α- and β-lapachones (α and β, respectively) and coupled with the drugs hydralazine (HDZ) and isoniazid (ACIL), were prepared, evaluated by electrochemical methods and assayed for anticancer activity. Method: The semisynthetic hydrazones were obtained and had their molecular structures established by NMR, IR, and MS. Anticancer activity was evaluated by cell viability determined by reduction of 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyl-2H-tetrazolium bromide (MTT). The electrochemical studies, mainly cyclic voltammetry, were performed, in aprotic and protic media. Result: The study showed that the compounds 2, 3, and 4 were active against at least one of the cancer cell lines evaluated, being compounds 3 and 4 the most cytotoxic. Toward HL-60 cells, compound 3 was 20x more active than β-lapachone, and 3x more cytotoxic than doxorubicin. Furthermore, 3 showed an SI value of 39.62 for HL-60 cells. Compound 4 was active against all cancer cells tested, with IC50 values in the range 2.90–12.40 μM. Electrochemical studies revealed a profile typical of self-protonation and reductive cleavage, dependent on the supporting electrolyte. Conclusion: These results therefore indicate that compounds 3 and 4 are strong candidates as prototypes of new antineoplastic drugs.


2019 ◽  
Vol 05 ◽  
Author(s):  
Atul Sharma ◽  
Devender Pathak

Keeping this fact that study of a body is biology but life is all about chemicals and chemical transformations, many medicinal chemist start research in finding new and novel chemical compounds which having pharmacological activities. Most of those chemical compounds which are having active pharmacological effects are heterocyclic compounds. Heterocyclic compounds clutch a particular place among pharmaceutically active natural and synthetic compounds. The ability to serve both as biomimetics and reactive pharmacophores of heterocyclic nuclei is incredible and it has principally contributed to their unique value as traditional key elements of numerous drugs. These heterocyclic nuclei offer a huge area for new lead molecules for drug discovery and for generation of activity relationships with biological targets to enhance pharmacological effects. For these reasons, it is not surprising that this structural class has received special attention in drug discovery. The hydrogen bond acceptors and donors arranged in a manner of a semi-rigid skeleton in heterocyclic rings and therefore they can present a varied display of significant pharmacophores. Lead identification and optimization of drug target probable can be achieved by generation of chemical diversity produced by derivatization of heterocyclic pharmacophores with different groups or substituents. A tricyclic carbazole nucleus is an integral part of naturally occurring alkaloids and synthetic derivatives, possessing various potential biological activities such as anticancer, antimicrobial and antiviral. Binding mechanism of carbazole with target receptor as a molecule or fused molecule exhibits the potential lethal effect.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 488
Author(s):  
Afrah E. Mohammed ◽  
Zainab H. Abdul-Hameed ◽  
Modhi O. Alotaibi ◽  
Nahed O. Bawakid ◽  
Tariq R. Sobahi ◽  
...  

By the end of the twentieth century, the interest in natural compounds as probable sources of drugs has declined and was replaced by other strategies such as molecular target-based drug discovery. However, in the recent times, natural compounds regained their position as extremely important source drug leads. Indole-containing compounds are under clinical use which includes vinblastine and vincristine (anticancer), atevirdine (anti-HIV), yohimbine (erectile dysfunction), reserpine (antihypertension), ajmalicine (vascular disorders), ajmaline (anti-arrhythmic), vincamine (vasodilator), etc. Monoterpene Indole Alkaloids (MIAs) deserve the curiosity and attention of researchers due to their chemical diversity and biological activities. These compounds were considered as an impending source of drug-lead. In this review 444 compounds, were identified from six genera belonging to the family Apocynaceae, will be discussed. These genera (Alstonia, Rauvolfia, Kopsia, Ervatamia, and Tabernaemontana, and Rhazya) consist of 400 members and represent 20% of Apocynaceae species. Only 30 (7.5%) species were investigated, whereas the rest are promising to be investigated. Eleven bioactivities, including antibacterial, antifungal, anti-inflammatory and immunosuppressant activities, were reported. Whereas cytotoxic effect represents 47% of the reported activities. Convincingly, the genera selected in this review are a wealthy source for future anticancer drug lead.


Sign in / Sign up

Export Citation Format

Share Document