scholarly journals Precipitation of Inorganic Salts in Mitochondrial Matrix

Membranes ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 81
Author(s):  
Jerzy J. Jasielec ◽  
Robert Filipek ◽  
Krzysztof Dołowy ◽  
Andrzej Lewenstam

In the mitochondrial matrix, there are insoluble, osmotically inactive complexes that maintain a constant pH and calcium concentration. In the present paper, we examine the properties of insoluble calcium and magnesium salts, such as phosphates, carbonates and polyphosphates, which might play this role. We find that non-stoichiometric, magnesium-rich carbonated apatite, with very low crystallinity, precipitates in the matrix under physiological conditions. Precipitated salt acts as pH buffer, and, hence, can contribute in maintaining ATP production in ischemic conditions, which delays irreversible damage to heart and brain cells after stroke.

1986 ◽  
Vol 2 (3) ◽  
pp. 299-307 ◽  
Author(s):  
William L. Gitomer ◽  
Richard L. Veech

Hepatocytes that were isolated from 48 hr starved rats and incu bated in Krebs-Henseleit bicarbonate buffer containing 10 μM A23187, 10mM l-lactate, 1 mM pyruvate and 2mM l-lysine were found to contain 0.064 μmol of inorganic pyrophosphate/g wet wgt cells. Addition of either 20mM acetate or butyrate, which caused the formation of pyrophosphate in both the cytosol and the mitochondrial matrix or only the matrix, resulted in an increase of 0.915 and 1.91 μmol pyrophosphate/g wet wgt cells, respectively. The accumulation of pyrophosphate was shown to be non-linear with time and dependent on the calcium concentration of the incu bation media. In contrast, incubations containing a combination of 10 mM NH4 Cl and 5 mM ornithine, which resulted in the forma tion of pyrophosphate only in the cytosol, had a pyrophosphate content of 0.032 μmol/g wgt cells. When isolated hepatocytes that had been incubated with acetate or butyrate were subjected to dig itonin fractionation, all of the recoverable pyrophosphate was pres ent in the particulate fraction. It is concluded that pyrophosphate accumulates in isolated rat hepatocytes only in the presence of cal cium and a calcium ionophore, only within the mitochondrial matrix and only when pyrophosphate is formed within the mito chondrial matrix.


1998 ◽  
Vol 142 (3) ◽  
pp. 613-623 ◽  
Author(s):  
Koji Okamoto ◽  
Philip S. Perlman ◽  
Ronald A. Butow

Green fluorescent protein (GFP) was used to tag proteins of the mitochondrial matrix, inner, and outer membranes to examine their sorting patterns relative to mtDNA in zygotes of synchronously mated yeast cells in ρ+ × ρ0 crosses. When transiently expressed in one of the haploid parents, each of the marker proteins distributes throughout the fused mitochondrial reticulum of the zygote before equilibration of mtDNA, although the membrane markers equilibrate slower than the matrix marker. A GFP-tagged form of Abf2p, a mtDNA binding protein required for faithful transmission of ρ+ mtDNA in vegetatively growing cells, colocalizes with mtDNA in situ. In zygotes of a ρ+ × ρ+ cross, in which there is little mixing of parental mtDNAs, Abf2p–GFP prelabeled in one parent rapidly equilibrates to most or all of the mtDNA, showing that the mtDNA compartment is accessible to exchange of proteins. In ρ+ × ρ0 crosses, mtDNA is preferentially transmitted to the medial diploid bud, whereas mitochondrial GFP marker proteins distribute throughout the zygote and the bud. In zygotes lacking Abf2p, mtDNA sorting is delayed and preferential sorting is reduced. These findings argue for the existence of a segregation apparatus that directs mtDNA to the emerging bud.


1987 ◽  
Vol 7 (1) ◽  
pp. 294-304 ◽  
Author(s):  
D Pilgrim ◽  
E T Young

Alcohol dehydrogenase isoenzyme III (ADH III) in Saccharomyces cerevisiae, the product of the ADH3 gene, is located in the mitochondrial matrix. The ADH III protein was synthesized as a larger precursor in vitro when the gene was transcribed with the SP6 promoter and translated with a reticulocyte lysate. A precursor of the same size was detected when radioactively pulse-labeled proteins were immunoprecipitated with anti-ADH antibody. This precursor was rapidly processed to the mature form in vivo with a half-time of less than 3 min. The processing was blocked if the mitochondria were uncoupled with carbonyl cyanide m-chlorophenylhydrazone. Mutant enzymes in which only the amino-terminal 14 or 16 amino acids of the presequence were retained were correctly targeted and imported into the matrix. A mutant enzyme that was missing the amino-terminal 17 amino acids of the presequence produced an active enzyme, but the majority of the enzyme activity remained in the cytoplasmic compartment on cellular fractionation. Random amino acid changes were produced in the wild-type presequence by bisulfite mutagenesis of the ADH3 gene. The resulting ADH III protein was targeted to the mitochondria and imported into the matrix in all of the mutants tested, as judged by enzyme activity. Mutants containing amino acid changes in the carboxyl-proximal half of the ADH3 presequence were imported and processed to the mature form at a slower rate than the wild type, as judged by pulse-chase studies in vivo. The unprocessed precursor appeared to be unstable in vivo. It was concluded that only a small portion of the presequence contains the necessary information for correct targeting and import. Furthermore, the information for correct proteolytic processing of the presequence appears to be distinct from the targeting information and may involve secondary structure information in the presequence.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yuichi Matsushima ◽  
Kazuya Takahashi ◽  
Song Yue ◽  
Yuki Fujiyoshi ◽  
Hideaki Yoshioka ◽  
...  

AbstractHuman ATP-dependent Lon protease (LONP1) forms homohexameric, ring-shaped complexes. Depletion of LONP1 causes aggregation of a broad range of proteins in the mitochondrial matrix and decreases the levels of their soluble forms. The ATP hydrolysis activity, but not protease activity, of LONP1 is critical for its chaperone-like anti-aggregation activity. LONP1 forms a complex with the import machinery and an incoming protein, and protein aggregation is linked with matrix protein import. LONP1 also contributes to the degradation of imported, aberrant, unprocessed proteins using its protease activity. Taken together, our results show that LONP1 functions as a gatekeeper for specific proteins imported into the mitochondrial matrix.


1990 ◽  
Vol 10 (5) ◽  
pp. 1873-1881
Author(s):  
S M Glaser ◽  
B R Miller ◽  
M G Cumsky

We have examined the import and intramitochondrial localization of the precursor to yeast cytochrome c oxidase subunit Va, a protein of the mitochondrial inner membrane. The results of studies on the import of subunit Va derivatives carrying altered presequences suggest that the uptake of this protein is highly efficient. We found that a presequence of only 5 amino acids (Met-Leu-Ser-Leu-Arg) could direct the import and localization of subunit Va with wild-type efficiency, as judged by several different assays. We also found that subunit Va could be effectively targeted to the mitochondrial inner membrane with a heterologous presequence that failed to direct import of its cognate protein. The results presented here confirmed those of an earlier study and showed clearly that the information required to "sort" subunit Va to the inner membrane resides in the mature protein sequence, not within the presequence per se. We present additional evidence that the aforementioned sorting information is contained, at least in part, in a hydrophobic stretch of 22 amino acids residing within the C-terminal third of the protein. Removal of this domain caused subunit Va to be mislocalized to the mitochondrial matrix.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Anastasia Agapouda ◽  
Veronika Butterweck ◽  
Matthias Hamburger ◽  
Dalene de Beer ◽  
Elizabeth Joubert ◽  
...  

Mitochondrial dysfunction plays a major role not only in the pathogenesis of many oxidative stress or age-related diseases such as neurodegenerative as well as mental disorders but also in normal aging. There is evidence that oxidative stress and mitochondrial dysfunction are the most upstream and common events in the pathomechanisms of neurodegeneration. Cyclopia species are endemic South African plants and some have a long tradition of use as herbal tea, known as honeybush tea. Extracts of the tea are gaining more scientific attention due to their phenolic composition. In the present study, we tested not only the in vitro mitochondria-enhancing properties of honeybush extracts under physiological conditions but also their ameliorative properties under oxidative stress situations. Hot water and ethanolic extracts of C. subternata, C. genistoides, and C. longifolia were investigated. Pretreatment of human neuroblastoma SH-SY5Y cells with honeybush extracts, at a concentration range of 0.1-1 ng/ml, had a beneficial effect on bioenergetics as it increased ATP production, respiration, and mitochondrial membrane potential (MMP) after 24 hours under physiological conditions. The aqueous extracts of C. subternata and C. genistoides, in particular, showed a protective effect by rescuing the bioenergetic and mitochondrial deficits under oxidative stress conditions (400 μM H2O2 for 3 hours). These findings indicate that honeybush extracts could constitute candidates for the prevention of oxidative stress with an impact on aging processes and age-related neurodegenerative disorders potentially leading to the development of a condition-specific nutraceutical.


1991 ◽  
Vol 98 (4) ◽  
pp. 771-790 ◽  
Author(s):  
M J Curran ◽  
M S Brodwick

Isolated matrices of the giant secretory vesicles of mast cells of the beige mouse were reliably produced by the osmotic lysis of isolated vesicles. These matrices maintained their form, and their sizes were easily measured using Nomarski optics. The size of the matrix depended on the ionic composition of the bathing solution. The physiologically relevant ions, histamine and serotonin, contracted the matrix. Multivalent cations condensed the matrix relative to univalents. Ag+, acid pH (below 5), and basic pH (above 9) expanded the matrix. In the presence of 10 mM histamine, lowering the pH from 9 to 5 contracted the matrix more than can be attributed to the pH-dependent matrix contraction in zero histamine. The nontitratable organic cation, dimethonium, contracts the matrix with little effect of pH in the range of 5-9. These results suggest that histamine acts as a matrix contractor in the divalent form. The dose-response (contraction) relation for histamine was gradual from micromolar to 316 mM (millimolar) histamine. Experiments with mixtures of histamine and sodium show antagonistic effects on the matrix but are inconsistent with either a model where ions compete for identical sites or a parallel model where ions interact with separate independent sites. In vigorous histamine washoff experiments, the half time for vesicle expansion in 10(-4) M pH buffer was approximately 4 s; in isotonic NaCl solution, it was 0.5 s. When 1 M histamine was presented to closely apposed matrices, fusion resulted. The matrix material returned to its initial shape after being mechanically deformed with a glass probe. These results suggest that the matrix size is controlled by its ion exchange properties. The matrix expansion can quantitatively account for the vesicular size increase observed upon exocytosis (as a postfusional event) and the osmotic nonideality of intact vesicles. The mechanical expansion is probably significant in the widening of the exocytotic pore and the dispersal of the vesicular contents.


1971 ◽  
Vol 125 (2) ◽  
pp. 531-539 ◽  
Author(s):  
Richard E. Reeves

1. An improved method is given for preparation of pyruvate, phosphate dikinase from Bacteroides symbiosus. 2. The bacterial enzyme is stable, free from interfering enzyme activities, and does not require thiol compounds to maintain stability during storage or assay. 3. New direct assays of enzyme activity are based on acid evolution or consumption as measured at constant pH in a pH-stat. 4. The optimum rate of reaction in the direction of pyruvate formation occurs at about pH6.4; in the direction of phosphoenolpyruvate formation, it is at pH7.2–7.8. 5. Newly determined substrate Km values for the enzyme are: AMP, 3.5×10−6m; ATP, 1×10−4m; pyruvate, 8×10−5m; Pi, 6×10−4m. 6. K+ may substitute for NH4+ in activating the reaction catalysed by the B. symbiosus enzyme. 7. In the direction of pyruvate formation the bivalent metal ion requirement of the enzyme is fulfilled by salts of nickel, manganese, magnesium and cobalt. In the other direction only magnesium salts were effective. 8. The nucleotide specificity of the enzyme is strictly limited to the adenine nucleotides. CTP and ITP strongly inhibit the reaction in the direction of phosphoenolpyruvate formation.


2020 ◽  
Vol 83 (1) ◽  
Author(s):  
Elizabeth Murphy ◽  
Charles Steenbergen

Mitochondria are responsible for ATP production but are also known as regulators of cell death, and mitochondrial matrix Ca2+ is a key modulator of both ATP production and cell death. Although mitochondrial Ca2+ uptake and efflux have been studied for over 50 years, it is only in the past decade that the proteins responsible for mitochondrial Ca2+ uptake and efflux have been identified. The identification of the mitochondrial Ca2+ uniporter (MCU) led to an explosion of studies identifying regulators of the MCU. The levels of these regulators vary in a tissue- and disease-specific manner, providing new insight into how mitochondrial Ca2+ is regulated. This review focuses on the proteins responsible for mitochondrial transport and what we have learned from mouse studies with genetic alterations in these proteins. Expected final online publication date for the Annual Review of Physiology, Volume 83 is February 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2020 ◽  
Vol 21 (22) ◽  
pp. 8622
Author(s):  
Pilar Álvarez-Illera ◽  
Paloma García-Casas ◽  
Rosalba I Fonteriz ◽  
Mayte Montero ◽  
Javier Alvarez

Mitochondrial [Ca2+] plays an important role in the regulation of mitochondrial function, controlling ATP production and apoptosis triggered by mitochondrial Ca2+ overload. This regulation depends on Ca2+ entry into the mitochondria during cell activation processes, which is thought to occur through the mitochondrial Ca2+ uniporter (MCU). Here, we have studied the mitochondrial Ca2+ dynamics in control and MCU-defective C. elegans worms in vivo, by using worms expressing mitochondrially-targeted YC3.60 yellow cameleon in pharynx muscle. Our data show that the small mitochondrial Ca2+ oscillations that occur during normal physiological activity of the pharynx were very similar in both control and MCU-defective worms, except for some kinetic differences that could mostly be explained by changes in neuronal stimulation of the pharynx. However, direct pharynx muscle stimulation with carbachol triggered a large and prolonged increase in mitochondrial [Ca2+] that was much larger in control worms than in MCU-defective worms. This suggests that MCU is necessary for the fast mitochondrial Ca2+ uptake induced by large cell stimulations. However, low-amplitude mitochondrial Ca2+ oscillations occurring under more physiological conditions are independent of the MCU and use a different Ca2+ pathway.


Sign in / Sign up

Export Citation Format

Share Document