scholarly journals Effects of Post Heat Treatment on the Mechanical Properties of Cold-Rolled Ti/Cu Clad Sheet

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1672
Author(s):  
Chang-Suk Youn ◽  
Dong-Geun Lee

Titanium and titanium alloys have excellent corrosion and heat resistance, but weak electric and thermal conductivity. The weak conductivity of titanium can be overcome by cladding with copper, which has high conductivity. Although titanium is expensive, it is selected as a material suitable for applications requiring corrosion resistance such as in heat exchangers. This study was to investigate the effect of post heat treatment on the mechanical properties of the Ti/Cu cold-rolled clad plate by using the interfacial diffusion bonding. A titanium clad by cold rolling should be heat-treated after the rolling process to improve the bonding properties through the diffusion of metals and removal of residual stress due to work hardening, despite the easy formation of intermetallic compounds of Ti and Cu. As a result post-treatment, the elongation was improved by more than two times from 21% to max. 53% by the Ti-Cu interface diffusion phenomenon and the average tensile strength of the 450 °C heat-treated specimens was 353 MPa. By securing high elongation while maintaining excellent tensile and yield strength through post-treatment, the formability of Ti-Cu clad plate can be greatly improved.

2013 ◽  
Vol 765 ◽  
pp. 434-438 ◽  
Author(s):  
Adam S. Taylor ◽  
Matthias Weiss ◽  
Tim Hilditch ◽  
Peter D. Hodgson ◽  
Nicole Stanford

Sheets of precipitate hardenable 2024 aluminium have been processed by rolling at liquid nitrogen temperature in order to refine the microstructure. A number of different aging/heat treating procedures have been utilised that have resulted in significantly different mechanical properties. The cryo-rolled material was heat treated at 150 °C for varying times and the resulting mechanical properties evaluated as a function of this holding time. The resulting properties were found to be strongly influenced by precipitates that formed either during the aging step, rolling process or the subsequent heat treatment. The formability of the cryo-rolled and heat treated material has been investigated using a limiting dome height test (Erichsen cupping test).


2007 ◽  
Vol 539-543 ◽  
pp. 317-322 ◽  
Author(s):  
Rafael Schouwenaars ◽  
J.A. Torres ◽  
Víctor H. Jacobo ◽  
Armando Ortiz

A 95% cold-rolled Al-20%Sn-1%Cu alloy was heat-treated in a range of temperatures and times to investigate the evolution of mechanical properties and microstructure. The most interesting combination of properties can be achieved between 300 and 400°C in a process that is simpler than what is used in industry. The physical phenomena which are active during the heat treatment are precipitation, recovery, recrystallisation and change in phase distribution due to surface tension. The former two predominate at low temperatures, while the latter achieve faster kinetics at higher temperatures, where recrystallisation is coupled to the change in morphology of the contiguous Sn-phase.


2011 ◽  
Vol 1296 ◽  
Author(s):  
K. Hirashita ◽  
M. Matsuda ◽  
M. Otsu ◽  
K. Takashima

ABSTRACTThe mechanical properties and deformation behavior of each constituent layer of multilayered steel composites were examined using microtensile testing. Three-layered integrated steels consisting of SUS420 and SPCC (cold-reduced carbon steel sheets) were fabricated by a cold-rolling process. Different heat treatment processes were used to prepare three types of specimens (as-rolled, 823K-2 min heat-treated, and 823K-500 min heat-treated), and the effect of heat treatment on their mechanical properties was investigated. In the as-rolled specimens, the average tensile strengths in the SUS420 and SPCC layers were 1063 and 606 MPa, respectively, while in the specimens heat-treated for 500 min, they were 680 and 451 MPa, respectively. The tensile strength decreased with the increase in the heat treatment time. The tensile strength of the specimens was also calculated by using the rule of mixture. For the as-rolled specimens and the 823K-2 min heat-treated specimens, the calculated value was consistent with the measured value; however, for the 823K-500 min heat-treated specimens, the calculated value was lower than the measured value. This result suggests that the necking of this layered structure was effectively obstructed by the outer ductile layer. The micromechanical characterization technique used in this study is useful not only for investigating deformation behavior but also for designing multilayered steel composites with superior mechanical properties.


2011 ◽  
Vol 1363 ◽  
Author(s):  
Kuk Hyun Song ◽  
Han Sol Kim ◽  
Won Yong Kim

ABSTRACTIn order to investigate the formation of precipitates such as MC carbides and intermetallic compounds in the friction stir welded and post-heat-treated Inconel 718 alloy, this work was carried out. Furthermore, the microstructural and mechanical properties of welds and post-heat-treated material were evaluated to identify the effect on precipitates formed during post-heat-treatment. Friction stir welding (FSW) was performed at a rotation speed of 200 rpm and welding speed of 150 mm/min; heat treatment was performed after welding at 720 °C for 8 hours in vacuum. As a result, the grain size due to FSW was notably refined from 5–20 μm in the base material to 1–3 μm in the stir zone; this was accompanied by dynamic recrystallization, which resulted in enhancements in the mechanical properties as compared to the base material. In particular, applying heat treatment after FSW led to improvements in the mechanical properties of the welds—the microhardness and tensile strength increased by more than 50% and 40% in fraction, respectively, as compared to FSW alone.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 593 ◽  
Author(s):  
Guisheng Yu ◽  
Zhibin Li ◽  
Youlu Hua ◽  
Hui Liu ◽  
Xueyang Zhao ◽  
...  

In this work, Ti-6Al-4V (Ti64) porous structures were prepared by selective laser melting (SLM), and the effects of post heat treatment on its microstructural and mechanical properties were investigated. The results showed that as SLM samples were mainly composed of needle-like α′ martensite. Heat treatment at 750 °C caused α′ phase to decompose, forming a lamellar α+β mixed microstructure. As the heat treatment temperature increased to 950 °C, the width of lamellar α phase gradually increased to 3.1 μm. Heat treatment also reduced the compressive strength of the samples; however, it significantly improved the ductility of the porous Ti64. Moreover, heat treatment improved the energy absorption efficiency of the porous Ti64. The samples heat-treated at 750 °C had the highest energy absorption of 233.6 ± 1.5 MJ/m3 at ε = 50%.


Author(s):  
Anand Kumar Subramaniyan ◽  
Sudarshan Reddy Anigani ◽  
Snehith Mathias ◽  
Akshay Pathania ◽  
Prasad Raghupatruni ◽  
...  

The post-heat treatment of direct metal laser sintered parts is expected to have superior mechanical properties. Therefore, the purpose of the present study is to investigate the post-heat treatment effect on the microstructure, mechanical and wear properties of direct metal laser sintering processed maraging steel. Hence, a systematic methodology for microstructural characterization, mechanical properties, and tribological performance evaluation was performed. The microstructural examinations were performed using optical and scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction technique. The micro-hardness and tensile properties were determined. The unidirectional sliding wear test was performed using a pin on disc wear testing machine for three different sliding velocities (0.8, 1.2, and 1.6 m/s) and three different normal loads (5, 10, and 15 N). The present study’s findings establish that the post-heat treatment techniques significantly altered the microstructural morphology and features. The results showed that the heat-treated sample had finer and non-continuous microstructure and more complex intermetallic precipitate phases, leading to higher hardness (∼64%) and higher tensile strength properties (70–80%) compared to the as-printed sample. The unidirectional sliding wear test results showed that the sliding velocity significantly affected frictional and wear characteristics of direct metal laser sintering processed maraging steel. The wear resistance of the heat-treated sample was three times higher than the as-printed sample, particularly at higher sliding velocities. In addition, the lower coefficient of friction values (∼24%) was observed for heat-treated sample compared to as-printed sample at higher sliding velocities. The post-heat treatment aids as an effective method to enhance mechanical properties of direct metal laser sintered parts and qualify them for tribological applications. The results endorse the suitability of the heat-treated direct metal laser sintered maraging steel in practical tool and die applications involving extreme tribological operating conditions such as higher sliding velocities and contact stresses.


2013 ◽  
Vol 813 ◽  
pp. 104-107
Author(s):  
Ju Young Jin ◽  
In Kyu Kim ◽  
Sun Ig Hong

In this study, roll-bonded Al/STS clad was heat-treated at various temperature (200-600 °C) for 1hour and then their mechanical performance and interfacial structure was studied. To estimate the mechanical properties of heat-treated clad materials at various temperatures, the tension tests were performed. For Al/STS clad heat-treated from 200 °C to 500 °C, no interfacial reaction layer was observed. Brittle intermetallic layer was observed between Al and STS, which induced the interface crack due to the large mismatch of the thermal expansion coefficient between two metal plates. XRD peaks from the interface region indicate the presence of Al2Fe, Al5Fe and Al13Cr2 in addition to Fe, Cr, Al and Mn. The UTS of Al/STS sheet was observed to follow the rule of mixture. One noticeable observation from stress-strain responses is that the fracture strain of Al/STS clad sheet increased markedly more than that of Al clad sheet by the increasing heat treatment temperature.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 255
Author(s):  
Dohyung Kim ◽  
Kinam Hong ◽  
Jeesoo Sim ◽  
Junghoon Lee ◽  
Wookjin Lee

In the present study, the shape, memory, and mechanical properties of cold-rolled and annealed Fe-17Mn-5Si-5Cr-4Ni-1Ti-0.3C (wt.%) alloy were investigated. The cold-rolled alloy was annealing heat-treated at different temperatures in the range of 500–900 °C for 30 min. The shape recovery behavior of the alloy was investigated using strip bending test followed by recovery heating. The microstructural evolution and the stress-strain response of the alloy heat-treated at different temperatures revealed that the recovery took place at a heat-treatment temperature higher than 600 °C. Recrystallization occurred when the heat-treatment temperature was higher than 800 °C. Meaningful shape recovery was observed only when the alloy was annealed at temperatures higher than 600 °C. The highest recovery strain of up to 2.56% was achieved with a pre-strain of 5.26% and recovery heating temperature of 400 °C, when the alloy was heat-treated at 700 °C. Conversely, the yield strength reduced significantly with increasing annealing heat-treatment temperature. The experimental observations presented in this paper provide a guideline for post-annealing heat-treatment when a good compromise between mechanical property and shape recovery performance is required.


2021 ◽  
Vol 64 ◽  
pp. 620-632
Author(s):  
Alexander Malikov ◽  
Anatoly Orishich ◽  
Igor Vitoshkin ◽  
Evgeniy Karpov ◽  
Alexei Ancharov

Sign in / Sign up

Export Citation Format

Share Document