scholarly journals Compressive Properties of A2024 Alloy Foam Fabricated through a Melt Route and a Semi-Solid Route

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 153 ◽  
Author(s):  
Takashi Kuwahara ◽  
Taro Osaka ◽  
Mizuki Saito ◽  
Shinsuke Suzuki

A2024 alloy foams were fabricated by two methods. In the first method, the melt was thickened by Mg, which acts as an alloying element (melt route). In the second method, the melt was thickened by using primary crystals at a semi-solid temperature with a solid fraction of 20% (semi-solid route). A2024 alloy foams fabricated through the semi-solid route had coarse and uneven pores. This led to slightly brittle fracture of the foams, which resulted in larger energy absorption efficiency than that of the foams fabricated through the melt route. Moreover, A2024 alloy foams fabricated through the semi-solid route had a coarser grain size because of the coarse primary crystals. However, by preventing the decrease in the alloying element Mg, the θ/θ’ phase was suppressed. Additionally, by preventing the precipitation of the S′ phase, the amount of Guinier-Preston-Bagaryatsky (GPB) zone increased. This resulted in a larger plateau stress.

2021 ◽  
Vol 889 ◽  
pp. 123-128
Author(s):  
Sheng Jun Liu ◽  
Zhi Qiang Dong ◽  
Ren Zhong Cao ◽  
Da Song ◽  
Jia An Liu ◽  
...  

In this study, the open-cell Mg-2Zn-0.4Y foams were prepared by infiltration casting method. The Ni/Mg hybrid foams were prepared by electroless Ni-P coating on the foam struts to improve the compressive strength and energy absorption capacity. The compressive properties of the Mg alloy foams and Ni/Mg hybrid foams were studied by quasi-static compressive test. The experimental results show that the Ni-P coating is composed of crystallites. The Ni-P coating can significantly enhance the compressive strength, energy absorption capacity and energy absorption efficiency of the foams.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3980
Author(s):  
Ludovic Blanc ◽  
Thérèse Schunck ◽  
Dominique Eckenfels

In the following work, sacrificial claddings filled with different brittle materials were investigated, from concrete foam to granular media. They were subjected to blast loading using an explosive driven shock tube, while a sensor measures the load transmission and a high speed camera records the compression of the core. From a macroscopic point of view, concrete foam and granular media can act efficiently as a crushable core but differs greatly in terms of energy dissipation mechanisms. To compare them, granular media was at first treated as a cellular material, and different key parameters (plateau stress, densification strain) were computed using the energy absorption efficiency methodology. The presented tests results, coupled with observation in literature, allow a better understanding on the crushing process of a granular media. In particular, granular media tend to work as a core even for low intensity load, contrary to more classical crushable core.


Author(s):  
Abeyram M Nithin ◽  
M Joseph Davidson ◽  
Chilakalapalli Surya Prakash Rao

The microstructure evolution of sintered and extruded samples of Al–4Si–0.6Mg powder alloys at various semi-solid temperature ranges of 560 °C, 580 °C, and 600 °C, holding times of 600, 1200, and 1800 s, and strain rates of 0.1, 0.2, and 0.3 s−1 was studied. From the stress–strain curves and metallographic studies, Arrhenius grain growth model and Avrami dynamic recrystallization model have been formulated by means of linear regression. Parameters such as peak strain, critical strain, recrystallization fraction, and material constants have been found using the above equations. The experimental and calculated values of various material parameters agree with each other, indicating the accuracy of the developed model. Finite element method-based simulations were performed using DEFORM 2D software, and the average grain size obtained from experiments and simulations was validated by means of average grain size. The relative density of the compacted specimens as well as the extruded specimens was also simulated. The simulation results showed that large grains appeared at high temperatures and at the bottom of the specimen.


2018 ◽  
Vol 933 ◽  
pp. 41-48 ◽  
Author(s):  
Chao Qun Guo ◽  
Ya Dong Sun ◽  
Yun Zhou ◽  
Bo Xie ◽  
Tian Yao Wang ◽  
...  

Copper foams by using CaCl2 as space holder were successfully manufactured by sintering and dissolution process. The porosity ranges from 75% to 91%, and cell size from 0.3mm to 3.0m. The volume fraction of CaCl2 and sintering temperature are the main factors that affect porosity of copper foam. The yield plateau stress of copper foams with porosity between 75.88% and 90.19% is in range of 12.1~1.2MPa. The yield plateau stress decreases with the increase of porosity. The energy absorption per unit volume (W) copper foams with porosity between 75.88% and 90.19% is in range of 6.17~0.63MJ/m3. Under the condition of identical porosity, the absorption energy per unit volume (W) of copper foam is about 43% higher than aluminum foam. The maximum ideal energy absorption efficiency of copper foam is about 0.74, it indicates that the copper foam can be used as a good absorbing material.


2022 ◽  
Vol 327 ◽  
pp. 11-25
Author(s):  
Guan Fei Xiao ◽  
Ju Fu Jiang ◽  
Ying Wang ◽  
Ying Zhe Liu ◽  
Ying Zhang ◽  
...  

Semi-solid processing combines the advantages of traditional forging and casting methods, so it has received much attention recently. However, the research on semi-solid behaviors of Nickel-based superalloys has been rarely reported. In order to investigate the behaviors of Nickel-based superalloy at solid and semi-solid states, oxidation experiments, isothermal treatment experiments and deformation experiments of GH4037 alloy were studied. Short-term oxidation experiments of GH4037 alloy were carried out at a solid temperature (1200 °C) and a semi-solid temperature (1360 °C). The results indicated that the oxides formed at 1200 °C were mainly composed of TiO2, Cr2O3 and a small amount of spinels NiCr2O4, while the oxides formed at 1360 °C consisted of the spinels of NiCr2O4, NiWO4 and NiMoO4 besides TiO2 and Cr2O3. Microstructure evolution of GH4037 alloy after semi-solid isothermal treatment at 1370 °C and 1380 °C was studied. The results indicated that semi-solid microstructures consisted of equiaxed solid grains and liquid phases. The average grains size and shape factor of solid grains were affected by melting mechanism and grain growth mechanism. Compression behaviors of GH4037 alloy after compressed at 1200 °C and 1360 °C were investigated. The results indicated that the flow stress of 1360 °C decreased significantly compared to that of 1200 °C. The deformation zones in the specimens were divided into three parts: the difficult deformation zone, the large deformation zone, and the free deformation zone. At 1200 °C, the deformation mechanism was plastic deformation mechanism. At 1360 °C, sliding between solid particles (SS), liquid flow (LF), flow of liquid incorporating solid particles (FLS), plastic deformation of solid particles (PDS) coexisted in the compression specimen.


Author(s):  
Mengyan Shi ◽  
Jiayao Ma ◽  
Yan Chen ◽  
Zhong You

Thin-walled tubes as energy absorption devices are widely in use for their low cost and high manufacturability. Employing origami technique on a tube enables induction of a predetermined failure mode so as to improve its energy absorption efficiency. Here we study the energy absorption of a hexagonal tubular device named the origami crash box numerically and theoretically. Numerical simulations of the quasi-static axial crushing show that the pattern triggers a diamond-shaped mode, leading to a substantial increase in energy absorption and reduction in initial peak force. The effects of geometric parameters on the performance of the origami crash box are also investigated through a parametric study. Furthermore, a theoretical study on the deformation mode and energy absorption of the origami crash box is carried out, and a good match with numerical results is obtained. The origami crash box shows great promise in the design of energy absorption devices.


2018 ◽  
Vol 777 ◽  
pp. 569-574
Author(s):  
Zhong You Xie

Due to thin skins and soft core, it is apt to local indentation inducing the concurrence of geometrical and material nonlinearity in sandwich structures. In the paper, finite element simulation is used to investigate the bending behavior of lightweight sandwich beams under large deflection. A modified formulation for the moment at mid-span section of sandwich beams under large deflection is presented, and energy absorption performance is assessed based on energy absorption efficiency. In addition, it is found that no local indentation arises initially, while later that increases gradually with loading displacement increasing. The height of the mid-span section as well as load-carrying capacity decreases significantly with local indentation depth increasing.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1792
Author(s):  
Khin Sandar Tun ◽  
Tan Yan Shen Brendan ◽  
Sravya Tekumalla ◽  
Manoj Gupta

The current study reports on the evolution of microstructure, variations in compressive properties and the ignition resistance of Mg through compositional variation, using alloying elements and nanoreinforcement. The alloys were designed with the use of a singular alloying element, Ca, and a binary alloying element, Ca+Sc, to develop Mg1Ca (wt.%) and Mg1Ca1Sc (wt.%) alloys. B4C nanoparticles were addedas the reinforcement phase in the Mg1Ca1Sc alloy to create the Mg1Ca1Sc/1.5B4C (wt.%) nanocomposite. The most effective compressive properties and level of ignition resistance was displayed by the developed composite. The grain sizes were significantly reduced in the Mg alloys (81%) and the composite (92%), compared with that of the Mg. Overall, the microstructural features (i.e., grain refinement, the formation of favorable intermetallic compounds, and hard reinforcement particles with an adequate distribution pattern) enhanced both the compressive strength and strain of the alloys and the composite. The ignition resistance was progressively increased from the alloys to the nanocomposite, and a peak ignition temperature of 752 °C was achieved in the composite. When compared with the ignition resistant of Elektron 21 (E21) alloy, which met the Federal Aviation Administration (FAA) requirements, the Mg1Ca1Sc/1.5B4C nanocomposite showed a higher specific yield strength and better ignition resistance, asserting it as a potential candidate material for lightweight engineering applications, including aerospace and defense sectors.


2022 ◽  
Vol 327 ◽  
pp. 45-53
Author(s):  
Jiehua Li ◽  
Maria Pammer ◽  
Ernst Neunteufl ◽  
Peter Schumacher

AZ80 alloy has been widely used to produce high performance Mg casting and wrought parts for high-end applications due to its high mechanical properties and deformation ability. However, at least two important issues still need to be solved in order to further improve its mechanical properties and deformation ability. Firstly, the grain size of α-Mg in AZ80 alloy is relatively large (more than 1000 µm) due to a lack of efficient grain refinement methodologies. Secondly, the size of the eutectic Mg17Al12 phase is also large and the distribution of the eutectic Mg17Al12 phase is continuous, which is very harmful for the mechanical properties, in particular to elongation. In this paper, these two important issues are investigated by adding Mg3N2 sub-micron particle into AZ80 alloy and thereby refining the α-Mg and the eutectic Mg17Al12 phase. Firstly, the Mg3N2 sub-micron particle was directly added into AZ80 alloy by using mechanically stirring in the semi-solid state, subsequently the melting temperature was increased above the liquidous temperature, and finally the melting was casted in the liquid state. It was found that the grain size of α-Mg can be refined from 883.8 µm to 169.9 µm. More importantly, the eutectic Mg17Al12 phase was also refined and the distribution became discontinuous. It should be noted that directly adding the Mg3N2 sub-micron particle into AZ80 alloy leads to a great loss of the Mg3N2 sub-micron particle due to the weak wetting behavior between the Mg3N2 sub-micron particle and Mg melt. The second methodology through mixing Mg3N2 sub-micron particles with AZ91 chips using a twin extruder was also used to prepare AZ91 master alloy with 3wt.% Mg3N2 sub-micron particle, which was subsequently added into AZ80 alloy in the liquid state. In this way, a significant grain refinement of α-Mg and a simultaneous refinement of the eutectic Mg17Al12 phase in AZ80 alloy was also achieved. The grain size of α-Mg can be refined from 883.8 µm to 325.9 µm. However, no significant grain refinement by using UST was observed. Instead, the grain size increases from 325.9 µm to 448.6 µm, indicating that the Mg3N2 sub-micron particle may lose its grain refinement potency due to possible aggregation and clustering. This paper provides an efficient and simple methodology for the grain refinement of α-Mg and the simultaneous refinement of the eutectic Mg17Al12 phase in AZ80 alloy.


Sign in / Sign up

Export Citation Format

Share Document