scholarly journals Improved Memory Properties of Graphene Oxide-Based Organic Memory Transistors

Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 643 ◽  
Author(s):  
Amjad Al-shawi ◽  
Maysoon Alias ◽  
Paul Sayers ◽  
Mohammed Fadhil Mabrook

To investigate the behaviour of the organic memory transistors, graphene oxide (GO) was utilized as the floating gate in 6,13-Bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene)-based organic memory transistors. A cross-linked, off-centre spin-coated and ozone-treated poly(methyl methacrylate) (cPMMA) was used as the insulating layer. High mobility and negligible hysteresis with very clear transistor behaviour were observed for the control transistors. On the other hand, memory transistors exhibited clear large hysteresis which is increased with increasing programming voltage. The shifts in the threshold voltage of the transfer characteristics as well as the hysteresis in the output characteristics were attributed to the charging and discharging of the floating gate. The counter-clockwise direction of hysteresis indicates that the process of charging and discharging the floating gate take place through the semiconductor/insulator interface. A clear shift in the threshold voltage was observed when different voltage pulses were applied to the gate. The non-volatile behaviour of the memory transistors was investigated in terms of charge retention. The memory transistors exhibited a large memory window (~30 V), and high charge density of (9.15 × 1011 cm−2).

2021 ◽  
Vol 93 ◽  
pp. 106149
Author(s):  
Xiaoxing Guo ◽  
Wenting Zhang ◽  
Jinchao Yin ◽  
Yan Xu ◽  
Yujie Bai ◽  
...  

2007 ◽  
Vol 350 ◽  
pp. 221-224
Author(s):  
Takeshi Yokota ◽  
Takaaki Kuribayashi ◽  
Takeshi Shundo ◽  
Keita Hattori ◽  
Yasutoshi Sakakibara ◽  
...  

We investigated the magnetic and dielectric properties of a metal (Pt)/insulator (Cr2O3)/semiconductor (Si) (MIS) capacitor composed of magneto-electric (ME) materials. The capacitor has anti-ferromagnetic properties and a very small electrically induced magnetic moment. It also shows capacitance-voltage (C-V) properties typical of a Si-MIS capacitor without any hysteresis. By inserting a thin Cr2O3-x layer, the C-V curve has a hysteresis window with a clockwise trace, which indicates that electrons have been injected into the Cr2O3-x layer. These results indicate that this MIS capacitor contains a floating gate and an ME insulating layer in a single system.


2021 ◽  
Vol 10 (1) ◽  
pp. 768-778
Author(s):  
Shaoqiang Meng ◽  
Xiaowei Ouyang ◽  
Jiyang Fu ◽  
Yanfei Niu ◽  
Yuwei Ma

Abstract Graphene (G) and graphene oxide (GO) have been shown to significantly improve the mechanical properties of cement-based materials. In this study, the effect of the G/GO on cement hydration was investigated. First, the zeta potential of G/GO in simulated solutions was tested, and the interaction between G/GO’s surface and Ca2+ was explored. Subsequently, scanning electron microscopy was used to observe the morphology of C–S–H nucleation and growth on the cement surface in the cement paste containing G/GO. Furthermore, XRD and TGA analyses were carried out on the hydration products of the sample. At last, isothermal calorimetry was applied to investigate the influence of G/GO on the early hydration of cement. The results showed that the addition of G/GO significantly accelerates C–S–H nucleation and growth on the cement surface. It is indicated that the high mobility ions derived by G/GO in the cement paste dominate the reason for the accelerated hydration of cement. The presence of G, especially GO, facilitates the mobility of ions, especially Ca2+, thus enhances the interaction between the cement surface and the ions. This strong interaction promotes the C–S–H nucleation and growth, and therefore, the hydration of the cement.


2021 ◽  
Author(s):  
Rishu Chaujar ◽  
Mekonnen Getnet Yirak

Abstract In this work, junctionless double and triple metal gate high-k gate all around nanowire field-effect transistor-based APTES biosensor has been developed to study the impact of ITCs on device sensitivity. The analytical results were authenticated using ‘‘ATLAS-3D’’ device simulation tool. Effect of different interface trap charge on the output characteristics of double and triple metal gate high-k gate all around junctionless NWFET biosensor was studied. Output characteristics, like transconductance, output conductance,drain current, threshold voltage, subthreshold voltage and switching ratio, including APTES biomolecule, have been studied in both devices. 184% improvement has been investigated in shifting threshold voltage in a triple metal gate compared to a double metal gate when APTES biomolecule immobilizes on the nanogap cavity region under negative ITCs. Based on this finding, drain off-current ratio and shifting threshold voltage were considered as sensing metrics when APTES biomolecule immobilizes in the nanogap cavity under negative ITCs which is significant for Alzheimer's disease detection. We signifies a negative ITC has a positive impact on our proposed biosensor device compared to positive and neutral ITCs.


2018 ◽  
Vol 924 ◽  
pp. 482-485
Author(s):  
Min Seok Kang ◽  
Kevin Lawless ◽  
Bong Mook Lee ◽  
Veena Misra

We investigated the impact of an initial lanthanum oxide (La2O3) thickness and forming gas annealing (FGA) conditions on the MOSFET performance. The FGA has been shown to dramatically improve the threshold voltage (VT) stability of 4H-SiC MOSFETs. The FGA process leads to low VTshift and high field effect mobility due to reduction of the interface states density as well as traps by passivating the dangling bonds and active traps in the Lanthanum Silicate dielectrics. By optimizing the La2O3interfacial layer thickness and FGA condition, SiC MOSFETs with high threshold voltage and high mobility while maintaining minimal VTshift are realized.


2004 ◽  
Vol 832 ◽  
Author(s):  
Yan Zhu ◽  
Dengtao Zhao ◽  
Ruigang Li ◽  
Jianlin Liu

ABSTRACTThe threshold voltage shift of a p-channel Ge/Si hetero-nanocrystal floating gate memory device was investigated both numerically and phenomenologically. The numerical investigations, by solving 2-D Poisson-Boltzmann equation, show that the presence of the Ge on Si dot tremendously prolongs the retention time, reflected by the time decay behavior of the threshold voltage shift. The increase of the thickness of either Si or Ge dot will reduce the threshold voltage shift. The shift strongly depends on the dot density. Nevertheless, only a weak relation between the threshold voltage shift and the tunneling oxide thickness was found. A circuit model was then introduced to interpret the behavior of threshold voltage shift, which agrees well with the results of the numerical method.


2013 ◽  
Vol 416-417 ◽  
pp. 1721-1725
Author(s):  
Liang Gong ◽  
Rui Ming Li ◽  
Qi Xiong ◽  
Shao Hua Zhou

Based on the introduction of floating-gate silicon quantum dot single-electron memorizers structure and working principle, this paper builds corresponding lumping current and capacitance model to calculate the current with memory in the circumstance of linearity, saturation and sub-threshold. Taking advantage of the single-electron devices Threshold Voltage Shift educes different storage condition of nanostorage with different threshold voltage. The simulation shows, this model can precisely simulate memorys read and write state.


Sign in / Sign up

Export Citation Format

Share Document