scholarly journals Novel Strategies in Artificial Organ Development: What Is the Future of Medicine?

Micromachines ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 646 ◽  
Author(s):  
Marta Klak ◽  
Tomasz Bryniarski ◽  
Patrycja Kowalska ◽  
Magdalena Gomolka ◽  
Grzegorz Tymicki ◽  
...  

The technology of tissue engineering is a rapidly evolving interdisciplinary field of science that elevates cell-based research from 2D cultures through organoids to whole bionic organs. 3D bioprinting and organ-on-a-chip approaches through generation of three-dimensional cultures at different scales, applied separately or combined, are widely used in basic studies, drug screening and regenerative medicine. They enable analyses of tissue-like conditions that yield much more reliable results than monolayer cell cultures. Annually, millions of animals worldwide are used for preclinical research. Therefore, the rapid assessment of drug efficacy and toxicity in the early stages of preclinical testing can significantly reduce the number of animals, bringing great ethical and financial benefits. In this review, we describe 3D bioprinting techniques and first examples of printed bionic organs. We also present the possibilities of microfluidic systems, based on the latest reports. We demonstrate the pros and cons of both technologies and indicate their use in the future of medicine.

2020 ◽  
Vol 6 (4) ◽  
Author(s):  
Soja Saghar Soman ◽  
Sanjairaj Vijayavenkataraman

Induced pluripotent stem cell (iPSC) technology and advancements in three-dimensional (3D) bioprinting technology enable scientists to reprogram somatic cells to iPSCs and 3D print iPSC-derived organ constructs with native tissue architecture and function. iPSCs and iPSC-derived cells suspended in hydrogels (bioinks) allow to print tissues and organs for downstream medical applications. The bioprinted human tissues and organs are extremely valuable in regenerative medicine as bioprinting of autologous iPSC-derived organs eliminates the risk of immune rejection with organ transplants. Disease modeling and drug screening in bioprinted human tissues will give more precise information on disease mechanisms, drug efficacy, and drug toxicity than experimenting on animal models. Bioprinted iPSC-derived cancer tissues will aid in the study of early cancer development and precision oncology to discover patient-specific drugs. In this review, we present a brief summary of the combined use of two powerful technologies, iPSC technology, and 3D bioprinting in health-care applications.


2020 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Arman Syah Putra

The problem raised in this research is the implementation of ERP (Electronic Road Price) which will be applied in several street corners of the capital of Jakarta, many pros and cons that will occur in its application, ranging from its licensing to its application in the field, socialization to users the road in the capital is very important to do because it will directly intersect with motorized motorists in the capital of Jakarta, in its application also must be considered using what tools are best placed in every corner of the capital to help smooth the system to be applied, in this research the author will provide suggestions and frameworks so that the implementation of the ERP system (Electronic Road Price) can be carried out right away, with the suggestions that have been made are expected to influence the policies that will be made in terms of ERP (Electronic Road Price) in the future.


2021 ◽  
pp. 136754942110045
Author(s):  
Jonathan Gross

COVID-19 has loosened neoliberalism’s hegemonic grip on the future. Amid the enormous suffering experienced internationally, there is much discussion of how to ‘Build Back Better’, and hope for a more caring, just and sustainable world. But competing futures are being imagined and planned. Hope is never politically neutral, and the content of collective hope is a key site of political struggle. This is partly a question of space: who has the literal and discursive space in which to develop visions of the future? The following article considers the role that cultural studies can play in this struggle. ‘Conjunctural analysis’ has a key task, making visible the competing futures contained within the present. But cultural studies should go further: combining conjunctural analysis with methods drawn from a range of scholarly and activist traditions – including critical pedagogy, devised theatre and the interdisciplinary field of futures studies – that deliberately create spaces for imagining new futures.


Vascular ◽  
2021 ◽  
pp. 170853812199650
Author(s):  
Joseph Edwards ◽  
Hossam Abdou ◽  
Neerav Patel ◽  
Marta J Madurska ◽  
Kelly Poe ◽  
...  

Objectives Swine ( Sus Scrofa) are utilized broadly in research settings, given similarities to human vessel size and function; however, there are some important differences for clinicians to understand in order to interpret and perform translational research. This review article uses angiograms acquired in the course of a translational research program to present a description of the functional anatomy of the swine. Methods Digital subtraction angiography and computed tomography angiography were obtained throughout the course of multiple studies utilizing power injection with iodinated contrast. Subtracted two-dimensional images and three-dimensional multiplanar reformations were utilized post image acquisition to create maximal intensity projections and three-dimensional renderings of using open-source software (OsiriX). These imaging data are presented along with vessel measurements for reference. Results An atlas highlighting swine vascular anatomy, with an emphasis on inter-species differences that may influence how studies are conducted and interpreted, was compiled. Conclusions Swine are utilized in broad-reaching fields for preclinical research. While many similarities between human and swine vasculature exist, there are important differences to consider when conducting and interpreting research. This review article highlights these differences and presents accompanying images to inform clinicians gaining experience in swine research.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1629
Author(s):  
Colin H. Quinn ◽  
Andee M. Beierle ◽  
Elizabeth A. Beierle

In the quest to advance neuroblastoma therapeutics, there is a need to have a deeper understanding of the tumor microenvironment (TME). From extracellular matrix proteins to tumor associated macrophages, the TME is a robust and diverse network functioning in symbiosis with the solid tumor. Herein, we review the major components of the TME including the extracellular matrix, cytokines, immune cells, and vasculature that support a more aggressive neuroblastoma phenotype and encumber current therapeutic interventions. Contemporary treatments for neuroblastoma are the result of traditional two-dimensional culture studies and in vivo models that have been translated to clinical trials. These pre-clinical studies are costly, time consuming, and neglect the study of cofounding factors such as the contributions of the TME. Three-dimensional (3D) bioprinting has become a novel approach to studying adult cancers and is just now incorporating portions of the TME and advancing to study pediatric solid. We review the methods of 3D bioprinting, how researchers have included TME pieces into the prints, and highlight present studies using neuroblastoma. Ultimately, incorporating the elements of the TME that affect neuroblastoma responses to therapy will improve the development of innovative and novel treatments. The use of 3D bioprinting to achieve this aim will prove useful in developing optimal therapies for children with neuroblastoma.


2010 ◽  
Vol 133-134 ◽  
pp. 665-670 ◽  
Author(s):  
N. Claudia ◽  
B. Cancino

The Pisco earthquake of August 15, 2007 resulted in 519 deaths and 1366 injured, with a total of 650,000 people affected and 80,000 dwellings damaged. Preliminary reports indicated that significant earthen sites were damaged. A few months after the earthquake a rapid assessment to better understand the failure of the affected sites was performed by a multidisciplinary team convened by the Getty Conservation Institute (GCI) in response to a request from the Instituto Nacional de Cultura del Perú (INC). This paper presents the highlights of that evaluation and its implications for the future design and retrofit of earthen buildings.


2006 ◽  
Vol 970 ◽  
Author(s):  
Manabu Bonkohara ◽  
Makoto Motoyoshi ◽  
Kazutoshi Kamibayashi ◽  
Mitsumasa Koyanagi

ABSTRACTRecently the development of three dimensional LSI (3D-LSI) has been accelerated and its stage has changed from the research level or limited production level to the investigation level with a view to mass production. This paper describes the current and the future 3D-LSI technologies which we have considered and imagined. The current technology is taken our Chip Size Package (CSP) for sensor device, for instance. In the future technology, there are the five key technologies are described. And considering con and pro of the current 3D LSI stacked approach, such as CoC (Chip on Chip), CoW (Chip on Wafer) and WoW (Wafer on Wafer), We confirmed that CoW combined with Super-Smart-Stack (SSS™) technology will shorten the process time per chip at the same level as WoW approach and is effective to minimize process cost.


2021 ◽  
Vol 28 ◽  
Author(s):  
Xiaohong Li ◽  
Liang Wen ◽  
Jiao Liu ◽  
Xiaohong Wang

: End-stage liver diseases have long been a threat to human health, and so far, the treatment of these diseases lacks of effective means. Allogenic organ transplantation has become the last straw for most of the patients with end-stage liver diseases. However, this technique has been greatly limited by the serious shortage of donors and other factors, such as immune rejection, drug syndrome, and high cost. Recently, the emergence of three-dimensional (3D) bioprinting technologies, together with the magnetic resonance imaging (MRI) and computed tomography (CT) techniques, has driven the rapid growth of this field toward liver therapies. There are several basic requirements for liver 3D bioprinting. From information collection of diseased livers, to 3D printing of liver substitutes (containing the major structural, material and functional characters), and to clinical applications, suitable ‘bioinks’ and ‘bioprinters’ have played essential roles. In this review, we highlight the advanced ‘bioinks’ and ‘bioprinters’ that have been used for vascularized and innervated liver tissue 3D bioprinting. Further studies for the incorporation of biliary networks in the bioartificial livers have been emphasized. It is expected that when all the bottle-neck problems for liver 3D bioprinting are solved, batch (i.e. mass) and personalized production of bioartificial livers will make it very easy to treat end-stage liver diseases.


2021 ◽  
Vol 7 (1) ◽  
pp. 3
Author(s):  
Ahmed Fatimi

There are a variety of hydrogel-based bioinks commonly used in three-dimensional bioprinting. In this study, in the form of patent analysis, the state of the art has been reviewed by introducing what has been patented in relation to hydrogel-based bioinks. Furthermore, a detailed analysis of the patentability of the used hydrogels, their preparation methods and their formulations, as well as the 3D bioprinting process using hydrogels, have been provided by determining publication years, jurisdictions, inventors, applicants, owners, and classifications. The classification of patents reveals that most inventions intended for hydrogels used as materials for prostheses or for coating prostheses are characterized by their function or properties Knowledge clusters and expert driving factors show that biomaterials, tissue engineering, and biofabrication research is concentrated in the most patents.


Sign in / Sign up

Export Citation Format

Share Document