scholarly journals Eggshell and Feed Microbiota Do Not Represent Major Sources of Gut Anaerobes for Chickens in Commercial Production

2021 ◽  
Vol 9 (7) ◽  
pp. 1480
Author(s):  
Jiri Volf ◽  
Magdalena Crhanova ◽  
Daniela Karasova ◽  
Marcela Faldynova ◽  
Tereza Kubasova ◽  
...  

In this study, we addressed the origin of chicken gut microbiota in commercial production by a comparison of eggshell and feed microbiota with caecal microbiota of 7-day-old chickens, using microbiota analysis by 16S rRNA sequencing. In addition, we tested at which timepoint during prenatal or neonatal development it is possible to successfully administer probiotics. We found that eggshell microbiota was a combination of environmental and adult hen gut microbiota but was completely different from caecal microbiota of 7-day-old chicks. Similarly, we observed that the composition of feed microbiota was different from caecal microbiota. Neither eggshell nor feed acted as an important source of gut microbiota for the chickens in commercial production. Following the experimental administration of potential probiotics, we found that chickens can be colonised only when already hatched and active. Spraying of eggs with gut anaerobes during egg incubation or hatching itself did not result in effective chicken colonisation. Such conclusions should be considered when selecting and administering probiotics to chickens in hatcheries. Eggshells, feed or drinking water do not act as major sources of gut microbiota. Newly hatched chickens must be colonised from additional sources, such as air dust with spores of Clostridiales. The natural colonisation starts only when chickens are already hatched, as spraying of eggs or even chickens at the very beginning of the hatching process did not result in efficient colonisation.

Metabolites ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 487
Author(s):  
Tao Zhang ◽  
Hao Ding ◽  
Lan Chen ◽  
Yueyue Lin ◽  
Yongshuang Gong ◽  
...  

Elucidation of the mechanism of lipogenesis and fat deposition is essential for controlling excessive fat deposition in chicken. Studies have shown that gut microbiota plays an important role in regulating host lipogenesis and lipid metabolism. However, the function of gut microbiota in the lipogenesis of chicken and their relevant mechanisms are poorly understood. In the present study, the gut microbiota of chicken was depleted by oral antibiotics. Changes in cecal microbiota and metabolomics were detected by 16S rRNA sequencing and ultra-high performance liquid chromatography coupled with MS/MS (UHPLC–MS/MS) analysis. The correlation between antibiotic-induced dysbiosis of gut microbiota and metabolites and lipogenesis were analysed. We found that oral antibiotics significantly promoted the lipogenesis of chicken. 16S rRNA sequencing indicated that oral antibiotics significantly reduced the diversity and richness and caused dysbiosis of gut microbiota. Specifically, the abundance of Proteobacteria was increased considerably while the abundances of Bacteroidetes and Firmicutes were significantly decreased. At the genus level, the abundances of genera Escherichia-Shigella and Klebsiella were significantly increased while the abundances of 12 genera were significantly decreased, including Bacteroides. UHPLC-MS/MS analysis showed that antibiotic-induced dysbiosis of gut microbiota significantly altered cecal metabolomics and caused declines in abundance of 799 metabolites and increases in abundance of 945 metabolites. Microbiota-metabolite network revealed significant correlations between 4 differential phyla and 244 differential metabolites as well as 15 differential genera and 304 differential metabolites. Three metabolites of l-glutamic acid, pantothenate acid and N-acetyl-l-aspartic acid were identified as potential metabolites that link gut microbiota and lipogenesis in chicken. In conclusion, our results showed that antibiotic-induced dysbiosis of gut microbiota promotes lipogenesis of chicken by altering relevant metabolomics. The efforts in this study laid a basis for further study of the mechanisms that gut microbiota regulates lipogenesis and fat deposition of chicken.


2021 ◽  
Vol 10 (2) ◽  
pp. 224
Author(s):  
Akira Furuta ◽  
Yasuyuki Suzuki ◽  
Ryosuke Takahashi ◽  
Birte Petersen Jakobsen ◽  
Takahiro Kimura ◽  
...  

Recent studies using 16S rRNA-based microbiota profiling have demonstrated dysbiosis of gut microbiota in constipated patients. The aim of this study was to investigate the changes in gut microbiota after transanal irrigation (TAI) in patients with spina bifida (SB). A questionnaire on neurogenic bowel disfunction (NBD), Bristol scale, and gut microbiota using 16S rRNA sequencing were completed in 16 SB patients and 10 healthy controls aged 6–17 years. Then, 11 of 16 SB patients with moderate to severe NBD scores received TAI for 3 months. Changes in urine cultures were also examined before and after the TAI treatments. In addition, correlation of gut microbiota and Bristol scale was analyzed. Significantly decreased abundance in Faecalibacterium, Blautia and Roseburia, and significantly increased abundance in Bacteroides and Roseburia were observed in the SB patients compared with controls and after TAI, respectively. The abundance of Roseburia was significantly correlated positively with Bristol scale. Urinary tract infection tended to decrease from 82% to 55% after TAI (p = 0.082) despite persistent fecal incontinence. Butyrate-producing bacteria such as Roseburia play a regulatory role in the intestinal motility and host immune system, suggesting the effects of TAI on gut microbiota.


2020 ◽  
Author(s):  
Laura Montoro Dasí ◽  
Arantxa Villagra ◽  
Maria de Toro ◽  
María Teresa Pérez-Gracia ◽  
Santiago Vega ◽  
...  

Abstract Background: The caecal microbiota and its modulation play an important role in animal health, productivity and disease control in poultry production. In this sense, it could be considered as a biomarker of poultry health. Furthermore, due to the emergence of resistant bacteria and the increasing social pressure to establish animal-friendly management on farms, producers are motivated to select more extensive and antibiotic-free breeds. It is therefore necessary to gain better knowledge on the development of major bacteria in healthy broilers, both in commercial fast-growing and in new slow-growing breeds. Hence, the aim of this study was to characterise caecal microbiota in two genetic poultry breeds throughout the growing period using 16S rRNA sequencing analysis. Results: A total of 50 caecal pools (25 per breed) were sequenced by the 16S rRNA method. The complexity of caecal microbiota composition increased significantly as animals grew. Furthermore, there were statistical differences between breeds at the end of the growing period. The dominant phyla throughout the production cycle were Firmicutes, Bacteroidetes and Proteobacteria. The predominantly identified genera were Ruminococcus spp., Lactobacillus spp. and Bacteroides spp.Conclusion: The results showed that the main caecal bacteria for both breeds were similar. Thus, these phyla or genera should be considered as biomarkers of poultry health in the evaluation of different treatments applied to animals.


2019 ◽  
Vol 14 (1) ◽  
pp. 288-298
Author(s):  
Siyue Zhao ◽  
Caiwu Li ◽  
Guo Li ◽  
Shengzhi Yang ◽  
Yingming Zhou ◽  
...  

AbstractThe giant panda (GP) was the most endangered species in China, and gut microbiota plays a vital role in host health. To determine the differences of the gut microbiota among the male, female and pregnant GPs, a comparative analysis of gut microbiota in GPs was carried out by 16S rRNA and ITS high-throughput sequencing. In 16S rRNA sequencing, 435 OTUs, 17 phyla and 182 genera were totally detected. Firmicutes (53.6%) was the predominant phylum followed by Proteobacteria (37.8%) and Fusobacteria (7.1%). Escherichia/Shigella (35.9%) was the most prevalent genus followed by Streptococcus (25.9%) and Clostridium (11.1%). In ITS sequencing, 920 OTUs, 6 phyla and 322 genera were also detected. Ascomycota (71.3%) was the predominant phylum followed by Basidiomycota (28.4%) and Zygomycota (0.15%). Purpureocillium (4.4%) was the most prevalent genus followed by Cladosporium (2.5%) and Pezicula (2.4%). Comparative analysis indicated that the male GPs harbor a higher abundance of phylum Firmicutes than female GPs with the contribution from genus Streptococcus. Meanwhile, the female GPs harbor a higher abundance of phylum Proteobacteria than male GPs with the contribution from genus Escherichia/ Shigella. In addition, the shift in bacteria from female to pregnant GPs indicated that phylum Firmicutes increased significantly with the contribution from Clostridium in the gut, which may provide an opportunity to study possible associations with low reproduction of the GPs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marta Reyman ◽  
Marlies A. van Houten ◽  
Kayleigh Arp ◽  
Elisabeth A. M. Sanders ◽  
Debby Bogaert

Abstract Rectal swabs are potentially a valuable method for monitoring the gut microbiome in research and clinical settings, where it is important to adhere to strict timing, or where acute sampling is needed. It is currently unknown whether rectal swabs give comparable results to faecal samples regarding microbiota community composition in neonates and infants. To study how well the two sampling methods correlate in infants, we compared the 16S-rRNA-based sequencing results of 131 paired rectal swabs and faecal samples collected from 116 infants at two timepoints in early life. The paired samples were highly comparable regarding both diversity and overall community composition, and strongly correlated on taxonomical level. We observed no significant nor relevant contribution of sampling method to the variation in overall gut microbiota community composition in a multivariable model. Our study provides evidence supporting the use of rectal swabs as a reliable proxy for faecal samples in infant gut microbiota research.


2013 ◽  
Vol 80 (2) ◽  
pp. 478-485 ◽  
Author(s):  
Yue Tang ◽  
Anthony Underwood ◽  
Adriana Gielbert ◽  
Martin J. Woodward ◽  
Liljana Petrovska

ABSTRACTThe animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identifiedClostridiales,Bacteroidaceae, andLactobacillaceaespecies as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged toLactobacillusspp., 155 belonged toClostridiumspp., and 66 belonged toStreptococcusspp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.


2020 ◽  
Vol 11 ◽  
Author(s):  
Huantian Cui ◽  
Yuting Li ◽  
Yuming Wang ◽  
Lulu Jin ◽  
Lu Yang ◽  
...  

The dysbiosis in gut microbiota could affect host metabolism and contribute to the development of nonalcoholic fatty liver disease (NAFLD). Da-Chai-Hu decoction (DCH) has demonstrated protective effects on NAFLD, however, the exact mechanisms remain unclear. In this study, we established a NAFLD rat model using a high fat diet (HFD) and provided treatment with DCH. The changes in gut microbiota post DCH treatment were then investigated using 16S rRNA sequencing. Additionally, serum untargeted metabolomics were performed to examine the metabolic regulations of DCH on NAFLD. Our results showed that DCH treatment improved the dyslipidemia, insulin resistance (IR) and ameliorated pathological changes in NAFLD model rats. 16S rRNA sequencing and untargeted metabolomics showed significant dysfunction in gut microbiota community and serum metabolites in NAFLD model rats. DCH treatment restored the dysbiosis of gut microbiota and improved the dysfunction in serum metabolism. Correlation analysis indicated that the modulatory effects of DCH on the arachidonic acid (AA), glycine/serine/threonine, and glycerophospholipid metabolic pathways were related to alterations in the abundance of Romboutsia, Bacteroides, Lactobacillus, Akkermansia, Lachnoclostridium and Enterobacteriaceae in the gut microflora. In conclusion, our study revealed the ameliorative effects of DCH on NAFLD and indicated that DCH’s function on NAFLD may link to the improvement of the dysbiosis of gut microbiota and the modulation of the AA, glycerophospholipid, and glycine/serine/threonine metabolic pathways.


Sign in / Sign up

Export Citation Format

Share Document