scholarly journals Associations between stool micro-transcriptome, gut microbiota, and infant growth

Author(s):  
Molly C. Carney ◽  
Xiang Zhan ◽  
Akanksha Rangnekar ◽  
Maria Z. Chroneos ◽  
Sarah J.C. Craig ◽  
...  

Abstract Rapid infant growth increases the risk for adult obesity. The gut microbiome is associated with early weight status; however, no study has examined how interactions between microbial and host ribonucleic acid (RNA) expression influence infant growth. We hypothesized that dynamics in infant stool micro-ribonucleic acids (miRNAs) would be associated with both microbial activity and infant growth via putative metabolic targets. Stool was collected twice from 30 full-term infants, at 1 month and again between 6 and 12 months. Stool RNA were measured with high-throughput sequencing and aligned to human and microbial databases. Infant growth was measured by weight-for-length z-score at birth and 12 months. Increased RNA transcriptional activity of Clostridia (R = 0.55; Adj p = 3.7E-2) and Burkholderia (R = −0.820, Adj p = 2.62E-3) were associated with infant growth. Of the 25 human RNAs associated with growth, 16 were miRNAs. The miRNAs demonstrated significant target enrichment (Adj p < 0.05) for four metabolic pathways. There were four associations between growth-related miRNAs and growth-related phyla. We have shown that longitudinal trends in gut microbiota activity and human miRNA levels are associated with infant growth and the metabolic targets of miRNAs suggest these molecules may regulate the biosynthetic landscape of the gut and influence microbial activity.

Nutrients ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1345
Author(s):  
Maureen Groer ◽  
Elizabeth M. Miller ◽  
Anujit Sarkar ◽  
Larry J. Dishaw ◽  
Samia V. Dutra ◽  
...  

Many very-low-birth-weight (VLBW) infants experience growth faltering in early life despite adequate nutrition. Early growth patterns can affect later neurodevelopmental and anthropometric potentials. The role of the dysbiotic gut microbiome in VLBW infant growth is unknown. Eighty-four VLBW infants were followed for six weeks after birth with weekly stool collection. DNA was extracted from samples and the V4 region of the 16S rRNA gene was sequenced with Illumina MiSeq. A similar microbiota database from full-term infants was used for comparing gut microbiome and predicted metabolic pathways. The class Gammaproteobacteria increased or remained consistent over time in VLBW infants. Out of 228 metabolic pathways that were significantly different between term and VLBW infants, 133 pathways were significantly lower in VLBW infants. Major metabolic differences in their gut microbiome included pathways involved in decreased glycan biosynthesis and metabolism, reduced biosynthetic capacity, interrupted amino acid metabolism, changes that could result in increased infection susceptibility, and many other system deficiencies. Our study reveals poor postnatal growth in a VLBW cohort who had dysbiotic gut microbiota and differences in predicted metabolic pathways compared to term infants. The gut microbiota in VLBW infants likely plays an important role in postnatal growth.


2021 ◽  
Author(s):  
Qin Qi ◽  
Ya-Nan Liu ◽  
Si-Yi Lv ◽  
Huan-Gan Wu ◽  
Lin-Shuang Zhang ◽  
...  

Abstract Background: Recent studies have shown that the pathogenesis of ulcerative colitis (UC) is closely related to the gut microbiota. Moxibustion, a common treatment in traditional Chinese medicine, is the burning of the herb moxa over acupuncture points. Moxibustion has been used to improve the inflammation and gastrointestinal dysfunctions in gastrointestinal disorders such as UC. In this study, we investigated whether moxibustion could improve the gut microbial dysbiosis induced by dextran sulphate sodium (DSS).Methods: Twenty-five male rats were randomly assigned into five groups: normal (NG), UC model (UC), moxibustion (UC+MOX), mesalazine (UC+MES), and normal rats with moxibustion (NG+MOX). The UC rat model was established by administering DSS solution. The rats in the UC+MOX and NG+MOX groups were treated with moxibustion at Tianshu (bilateral, ST25) points once daily for 7 consecutive days, and the UC+MES group rats were treated with mesalazine once daily for 7 consecutive days. After intervention, gut microbiota profiling was conducted by metagenomic high throughput sequencing technology. The gut microbiota composition, diversity and function were analyzed and compared using metagenomics methodologies.Results: The most abundant phyla of five groups were Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria. Moxibustion treatment increased abundance levels of Bacteroidetes, Actinobacteria, Ascomycota, Synergistetes and decreased abundance of Firmicutes, Proteobacteria. At the genus level, the abundance of Bacteroides, Bacteroides_bacterium_M7, Prevotella, Bacteroidales_bacterium_H2, were increased and Bacteroides_bacterium_H3, Parabacteroides, Porphyromonas, Alistipes, Parasutterella were decreased in the UC group in comparsion with those in the NG group. Moxibustion increased the abundance of Bacteroides and Bacteroides_bacterium_H3 and decreased Bacteroides_bacterium_M7, Prevotella, Bacteroidales_bacterium_H2. In addition, compare with the NG group, genes involved in certain metabolic pathways, such as energy production and conversion, amino acid transport and metabolism, nucleotide transport and metabolism, carbohydrate transport and metabolism, replication, recombination and repair, were under-represented in the UC group, and these changes in the metabolic pathways could be reversed by moxibustion treatment and mesalazine treatment.Conclusion: Our findings suggest that moxibustion treatment may protect the host from mucosal inflammation by modulating the intestinal microbiota community.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2412
Author(s):  
Sonia González ◽  
Marta Selma-Royo ◽  
Silvia Arboleya ◽  
Cecilia Martínez-Costa ◽  
Gonzalo Solís ◽  
...  

The early life gut microbiota has been reported to be involved in neonatal weight gain and later infant growth. Therefore, this early microbiota may constitute a target for the promotion of healthy neonatal growth and development with potential consequences for later life. Unfortunately, we are still far from understanding the association between neonatal microbiota and weight gain and growth. In this context, we evaluated the relationship between early microbiota and weight in a cohort of full-term infants. The absolute levels of specific fecal microorganisms were determined in 88 vaginally delivered and 36 C-section-delivered full-term newborns at 1 month of age and their growth up to 12 months of age. We observed statistically significant associations between the levels of some early life gut microbes and infant weight gain during the first year of life. Classifying the infants into tertiles according to their Staphylococcus levels at 1 month of age allowed us to observe a significantly lower weight at 12 months of life in the C-section-delivered infants from the highest tertile. Univariate and multivariate models pointed out associations between the levels of some fecal microorganisms at 1 month of age and weight gain at 6 and 12 months. Interestingly, these associations were different in vaginally and C-section-delivered babies. A significant direct association between Staphylococcus and weight gain at 1 month of life was observed in vaginally delivered babies, whereas in C-section-delivered infants, lower Bacteroides levels at 1 month were associated with higher later weight gain (at 6 and 12 months). Our results indicate an association between the gut microbiota and weight gain in early life and highlight potential microbial predictors for later weight gain.


2021 ◽  
Vol 17 ◽  
pp. 117693432199635
Author(s):  
Daoxin Liu ◽  
Pengfei Song ◽  
Jingyan Yan ◽  
Haijing Wang ◽  
Zhenyuan Cai ◽  
...  

Wild-caught animals must cope with drastic lifestyle and dietary changes after being induced to captivity. How the gut microbiome structure of these animals will change in response receives increasing attention. The plateau zokor ( Eospalax baileyi), a typic subterranean rodent endemic to the Qinghai-Tibet plateau, spends almost the whole life underground and is well adapted to the environmental pressures of both plateau and underground. However, how the gut microbiome of the plateau zokor will change in response to captivity has not been reported to date. This study compared the microbial community structure and functions of 22 plateau zokors before (the WS group) and after being kept in captivity for 15 days (the LS group, fed on carrots) using the 16S rRNA gene via high-throughput sequencing technology. The results showed that the LS group retained 973 of the 977 operational taxonomic units (OTUs) in the WS group, and no new OTUs were found in the LS group. The dominant bacterial phyla were Bacteroides and Firmicutes in both groups. In alpha diversity analysis, the Shannon, Sobs, and ACE indexes of the LS group were significantly lower than those of the WS group. A remarkable difference ( P < 0.01) between groups was also detected in beta diversity analysis. The UPGMA clustering, NMDS, PCoA, and Anosim results all showed that the intergroup difference was significantly greater than the intragroup difference. And compared with the WS group, the intragroup difference of the gut microbiota in the LS group was much larger, which failed to support the assumption that similar diets should drive convergence of gut microbial communities. PICRUSt revealed that although some functional categories displayed significant differences between groups, the relative abundances of these categories were very close in both groups. Based on all the results, we conclude that as plateau zokors enter captivity for a short time, although the relative abundances of different gut microbiota categories shifted significantly, they can maintain almost all the OTUs and the functions of the gut microbiota in the wild. So, the use of wild-caught plateau zokors in gut microbial studies is acceptable if the time in captivity is short.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1476
Author(s):  
Jian Zhang ◽  
Ai Zhao ◽  
Shiyun Lai ◽  
Qingbin Yuan ◽  
Xiaojiang Jia ◽  
...  

Our knowledge related to human milk proteins is still limited. The present study determined the changes in multiple human milk proteins during the first six months of lactation, investigated the influencing factors of milk proteins, and explored the impact of milk proteins on infant growth. A total of 105 lactating women and their full-term infants from China were prospectively surveyed in this research. Milk samples were collected at 1–5 days, 8–14 days, 1 month, and 6 months postpartum. Concentrations of total protein and α-lactalbumin were measured in all milk samples, and concentrations of lactoferrin, osteopontin, total casein, β-casein, αs−1 casein, and κ-casein were measured in milk from 51 individuals using ultra performance liquid chromatography coupled with mass spectrometry. The concentration of measured proteins in the milk decreased during the first six months of postpartum (p-trend < 0.001). Maternal age, mode of delivery, maternal education, and income impacted the longitudinal changes in milk proteins (p-interaction < 0.05). Concentrations of αs−1 casein in milk were inversely associated with the weight-for-age Z-scores of the infants (1 m: r −0.29, p 0.038; 6 m: r −0.33, p 0.020). In conclusion, the concentration of proteins in milk decreased over the first six months postpartum, potentially influenced by maternal demographic and delivery factors. Milk protein composition may influence infant weights.


2018 ◽  
Vol 115 (52) ◽  
pp. E12305-E12312 ◽  
Author(s):  
Meng Qu ◽  
Tomas Duffy ◽  
Tsuyoshi Hirota ◽  
Steve A. Kay

Either expression level or transcriptional activity of various nuclear receptors (NRs) have been demonstrated to be under circadian control. With a few exceptions, little is known about the roles of NRs as direct regulators of the circadian circuitry. Here we show that the nuclear receptor HNF4A strongly transrepresses the transcriptional activity of the CLOCK:BMAL1 heterodimer. We define a central role for HNF4A in maintaining cell-autonomous circadian oscillations in a tissue-specific manner in liver and colon cells. Not only transcript level but also genome-wide chromosome binding of HNF4A is rhythmically regulated in the mouse liver. ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK:BMAL1 at a wide array of metabolic genes involved in lipid, glucose, and amino acid homeostasis. Taken together, we establish that HNF4A defines a feedback loop in tissue-specific mammalian oscillators and demonstrate its recruitment in the circadian regulation of metabolic pathways.


2019 ◽  
Vol 65 (3) ◽  
pp. 201-213
Author(s):  
Yang Li ◽  
Zhaojun Wu ◽  
Xingchen Dong ◽  
Dongmei Wang ◽  
Huizhen Qiu ◽  
...  

Ecological restoration technologies applied to tailings can influence the associated bacterial communities. However, it is unknown if the shifts in these bacterial communities are caused by increased organic carbon. Glucose-induced respiration and high-throughput sequencing were used to assess the microbial activity and bacterial communities, respectively. Glucose addition increased the microbial activity, and glucose + ammonium nitrate addition resulted in slightly higher CO2 emission than did glucose addition alone, suggesting that carbon and nitrogen limited microbial community growth. In neutral pH tailings, the bacterial taxa that increased by glucose addition were assigned to the phyla Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Planctomycetes. However, the bacterial taxa that increased by glucose addition in acidic tailings only belonged to the phylum Actinobacteria (maximum increase of 43.78%). In addition, the abundances of the total nitrogen-fixing genera and of the genus Arthrobacter (representing approximately 97.89% of the total nitrogen-fixing genera) increased by glucose addition in acidic tailings (maximum increase of 46.98%). In contrast, the relative abundances of the total iron- and (or) sulfur-oxidizing bacteria decreased (maximum decrease of 10.41%) in response to the addition of glucose. These findings indicate that the addition of organic carbon is beneficial to the development of bacterial communities in mine tailings.


2021 ◽  
Vol 9 (9) ◽  
pp. 1845
Author(s):  
Soumaya Kouidhi ◽  
Nessrine Souai ◽  
Oumaima Zidi ◽  
Amor Mosbah ◽  
Amel Lakhal ◽  
...  

There is mounting evidence for the emerging role of gut microbiota (GM) and its metabolites in profoundly impacting allogenic hematopoietic stem cell transplantation (allo-HSCT) and its subsequent complications, mainly infections and graft versus host-disease (GvHD). The present study was performed in order to investigate changes in GM composition and fecal metabolic signature between transplant patients (n = 15) and healthy controls (n = 18). The intestinal microbiota was characterized by NGS and gas chromatography–mass spectrometry was employed to perform untargeted analysis of fecal metabolites. We found lower relative abundances of Actinobacteria, Firmicutes, and Bacteroidetes and a higher abundance of Proteobacteria phylum after allo-HSCT. Particularly, the GvHD microbiota was characterized by a lower relative abundance of the short-chain fatty acid-producing bacteria, namely, the Feacalibacterium, Akkermansia, and Veillonella genera and the Lachnospiraceae family, and an enrichment in multidrug-resistant bacteria belonging to Escherichia, Shigella, and Bacteroides. Moreover, network analysis showed that GvHD was linked to a higher number of positive interactions of Blautia and a significant mutual-exclusion rate of Citrobacter. The fecal metabolome was dominated by lipids in the transplant group when compared with the healthy individuals (p < 0.05). Overall, 76 metabolites were significantly altered within transplant recipients, of which 24 were selected as potential biomarkers. Furthermore, the most notable altered metabolic pathways included the TCA cycle; butanoate, propanoate, and pyruvate metabolisms; steroid biosynthesis; and glycolysis/gluconeogenesis. Specific biomarkers and altered metabolic pathways were correlated to GvHD onset. Our results showed significant shifts in gut microbiota structure and fecal metabolites characterizing allo-HSCT.


2021 ◽  
Author(s):  
Peifeng Xie ◽  
Chengjun Hu ◽  
Qinghua He ◽  
Qian Zhu ◽  
Xiangfeng Kong

Abstract Background Gut microbiota and their metabolites were associated with obesity. Our previous study showed that maternal body fat percentage increased from days 45 to 110 of gestation in a Huanjiang mini-pig model. Thus, 16S rRNA sequencing and metabonomic techniques were used to investigate the changes of maternal gut microbiota composition and microbial metabolite profile from days 45 to 110 of gestation. Results The abundances of Clostridium_sensu_stricto_1, Romboutsia, Turicibacter, and Streptococcus in jejunum contents were higher in day 110 than those in day 45 or 75 of gestation. In ileum, the abundance of Streptococcus was the highest (P < 0.05) at day 110 of gestation, as well as the metabolism function of jejunal and ileal microbiota. The ileal butyrate and acetate concentrations were the highest at day 45 and day 110 of gestation, respectively. In colon, the concentrations of cadaverine and spermine were the highest (P < 0.05) at days 45 and 110 of gestation, respectively. Metabonomic analysis demonstrated that metabolic pathways including glutamine and glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and alanine, aspartate, and glutamate metabolism changed during gestation. Conclusions Microbiota composition and metabolites changed dramatically from the early to the late pregnancy, which might be associated with the maternal fat accumulation.


Sign in / Sign up

Export Citation Format

Share Document