scholarly journals The Growth Characteristics and Kinetics of Metallic Iron in Coal-Based Reduction of Jinchuan Ferronickel Slag

Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 876
Author(s):  
Jianwen Yu ◽  
Yonghong Qin ◽  
Peng Gao ◽  
Yongsheng Sun ◽  
Songbo Ma

As the fourth-largest industry waste residue, after iron slag, steel slag, and red mud, in China, the comprehensive utilization of nickel slag is imminent. Coal-based reduction combined with magnetic separation was considered an efficient method to extract iron from nickel slag. During the coal-based reduction of Jinchuan ferronickel slag, the growth characteristics and kinetics of metallic iron were investigated in this paper. The metallisation rate and metal iron grain size gradually increased with the reduction temperature or the reaction time, and the coal-based reduction process was divided into the rapid formation period and the aggregation growth period of the metallic phase. The granularity distribution of metallic iron obeyed the Doseresp sigmoidal function, and the activation energy of grain growth at different stages were 52.482 ± 4.448 kJ·mol−1 and 26.426 ± 3.295 kJ·mol−1, respectively. Meanwhile, a mathematical growth model of the metallic iron grains was also established.

Author(s):  
Zhiyuan Chen ◽  
Christiaan Zeilstra ◽  
Jan van der Stel ◽  
Jilt Sietsma ◽  
Yongxiang Yang

AbstractIn order to understand the pre-reduction behaviour of fine hematite particles in the HIsarna process, change of morphology, phase and crystallography during the reduction were investigated in the high temperature drop tube furnace. Polycrystalline magnetite shell formed within 200 ms during the reduction. The grain size of the magnetite is in the order of magnitude of 10 µm. Lath magnetite was observed in the partly reduced samples. The grain boundary of magnetite was reduced to molten FeO firstly, and then the particle turned to be a droplet. The Johnson-Mehl-Avrami-Kolmogorov model is proposed to describe the kinetics of the reduction process. Both bulk and surface nucleation occurred during the reduction, which leads to the effect of size on the reduction rate in the nucleation and growth process. As a result, the reduction rate constant of hematite particles increases with the increasing particle size until 85 µm. It then decreases with a reciprocal relationship of the particle size above 85 µm.


2021 ◽  
pp. 72-77
Author(s):  
Tien Hiep Nguyen ◽  
◽  
Van Minh Nguyen ◽  

In this work the kinetics of synthesizing process of metallic iron nanopowder by hydrogen reduction from α-FeOOH hydroxide under isothermal conditions were studied. α-FeOOH nanopowder was prepared in advance by chemical deposition from aqueous solutions of iron nitrate Fe(NO3)3 (10 wt. %) and alkali NaOH (10 wt. %) at room temperature, pH = 11, under the condition of continuous stirring. The hydrogen reduction process of α-FeOOH nanopowder under isothermal conditions was carried out in a tube furnace in the temperature range from 390 to 470 °C. The study of the crystal structure and composition of the powders was performed by X-ray phase analysis. The specific surface area S of the samples was measured using BET method by low-temperature nitrogen adsorption. The average particle size D of powders was determined via the measured S value. The size characteristics and morphology of the particles were investigated by transmission and scanning electron microscopes. The calculation of the kinetic parameters of the hydrogen reduction process of α-FeOOH under isothermal conditions was carried out by the Gray-Weddington model and Arrhenius equation. It is shown that the rate constant of reduction at 470 °C is approximately 2.2 times higher than in the case at 390 °C. The effective activation energy of synthesizing process of iron nanopowder by hydrogen reduction from α-FeOOH was ~38 kJ/mol, which indicates a mixed reaction mode. In this case, the kinetics overall process is limited by both the kinetics of the chemical reaction and the kinetics of diffusion, respectively, an expedient way to accelerate the process by increasing the temperature or eliminate the diffusion layer of the reduction product by intensive mixing. It is show that Fe nanoparticles obtained by hydrogen reduction of its hydroxide at 410 °C, corresponding to the maximum specific rate of the reduction process, are mainly irregular in shape, evenly distributed, the size of which ranges from several dozens to 100 nm with an average value of 75 nm.


2021 ◽  
Vol 21 (4) ◽  
pp. 2563-2567
Author(s):  
Nguyen Hoang Viet ◽  
Pham Ngoc Dieu Quynh ◽  
Nguyen Thi Hoang Oanh

In this work, a mixture of mill scale with 5 wt% molasses as binder was pressed under pressure of 200 MPa to prepare briquettes. The reduction process was performed at the temperature of 1000, 1050, 1100, 1150 and 1200 °C in the bed of A3 fine coal as the reductant. The degree of reduction was evaluated at time duration of 15, 30, 45, 60, 90 and 150 minutes, after the furnace temperature reached the predetermined reduction temperature. The highest reduction degree is 94.7% at the reduction process temperature of 1200 °C. Reaction rate constant (k) increased from 4.63×10-4 to 5.03×10-3 min-1 when the temperature increased from 1000 to 1200 °C. The apparent activation energy of the reduction reaction (Ea) is about 95.6 kJ/mole.


1991 ◽  
Vol 77 (10) ◽  
pp. 1577-1584
Author(s):  
Fengman SHEN ◽  
Reijiro TAKAHASHI ◽  
Jun-ichiro YAGI

Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 940
Author(s):  
Se-Jin Choi ◽  
Young-Uk Kim ◽  
Tae-Gue Oh ◽  
Bong-Suk Cho

The shortage of natural aggregates has recently emerged as a serious problem owing to the tremendous growth of the concrete industry. Consequently, the social interest in identifying aggregate materials as alternatives to natural aggregates has increased. In South Korea’s growing steel industry, a large amount of steel slag is generated and discarded every year, thereby causing environmental pollution. In previous studies, steel slag, such as blast furnace slag (BFS), has been used as substitutes for concrete aggregates; however, few studies have been conducted on concrete containing both BFS and Ferronickel slag (FNS) as the fine aggregate. In this study, the compressive strength, chloride ion penetrability, and carbonation characteristic of concrete with both FNS and BFS were investigated. The mixed slag fine aggregate (MSFA) was used to replace 0, 25%, 50%, 75%, and 100% of the natural fine aggregate volume. From the test results, the highest compressive strength after 56 days was observed for the B/F100 sample. The 56 days chloride ion penetrability of the B/F75, and B/F100 samples with the MSFA contents of 75% and 100% were low level, approximately 34%, and 54% lower than that of the plain sample, respectively. In addition, the carbonation depth of the samples decreased with the increase in replacement ratio of MSFA.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 51 ◽  
Author(s):  
Tuo Wu ◽  
Yanling Zhang ◽  
Zheng Zhao ◽  
Fang Yuan

High-temperature quench method, scanning electron microscope-energy dispersive spectroscopy (SEM-EDS), and thermodynamic analysis were adopted to study the effects of Fe2O3 on reduction process of Cr-containing solid waste self-reduction briquette (Cr-RB). Moreover, the relevant mechanism was also studied. The results clearly showed that the addition of Fe2O3 decreased the chromium-iron ratio (Cr/(Fe + Cr)) of Cr-RB itself and promoted the reduction of chrome oxide in the Cr-containing solid wastes such as stainless steel slag and dust. A large number of Fe-C alloy droplets generated in the lower temperature could decrease the activity of reduced chromium by in situ dissolution and the reduction of Cr-oxide was accelerated. Rapid separation of metal and slag could be achieved at a relatively lower temperature, which was very beneficial to the efficient recovery of Cr. Finally, the corresponding mechanism diagram was presented.


2014 ◽  
Vol 50 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Y. Wang ◽  
L. Wang ◽  
J. Yu ◽  
K.C. Chou

In order to optimize the current reduction process of chromite, a good knowledge of reduction mechanism involved is required. The basic component in chromite ore is FeCr2O4, thus, kinetic investigation of synthetic FeCr2O4 with different amount of carbon were carried out in the temperature range of 1473K to 1673K under both isothermal and non-isothermal mode. The iron can be easily reduced compared with chromium. And higher reduction degree of chromite can be achieved by increasing temperature and carbon content. With the supporting of X-ray Diffraction and Scanning Electron Microscope methods, the formation of metallic products followed the sequence: Fe-C alloy, (Fe,Cr)7C3and Fe-Cr-C alloy. Kinetics analysis showed that the first stage was controlled by nucleation with an apparent activation energy of 120kJ/mol, while the chromium reduction was controlled by crystallochemical transformation with an apparent activation energy of 288kJ/mol.


2011 ◽  
Vol 354-355 ◽  
pp. 33-36
Author(s):  
Jian Yun Li ◽  
Quan Xian Hua ◽  
Jun Ling Niu ◽  
Jian Wei Tang ◽  
Ke Xu

The adsorption of copper in aqueous solutions by steel slag was studied in batch adsorption experiments. The adsorption equilibrium data fitted best with Langmuir and Freundlich equations. The adsorption was preferential type. A comparison of the kinetics models on the apparent adsorption rate showed that the adsorption system was best described by the pseudo-second-order kinetics. The adsorption rate was controlled by both liquid film diffusion and intraparticle dispersion.


Sign in / Sign up

Export Citation Format

Share Document