scholarly journals Rapid and Scalable Wire-bar Strategy for Coating of TiO2 Thin-films: Effect of Post-Annealing Temperatures on Structures and Catalytic Dye-Degradation

Molecules ◽  
2020 ◽  
Vol 25 (7) ◽  
pp. 1683 ◽  
Author(s):  
P. Divya ◽  
S. Arulkumar ◽  
S. Parthiban ◽  
Anandarup Goswami ◽  
Tansir Ahamad ◽  
...  

Titanium dioxide (TiO2) thin films were rapidly coated on Corning glass substrates from the precursor solution using the wire-bar technique at the room temperature and then post-annealed at 400, 500 and 600 °C for 1 h under atmospheric conditions. The structural, morphological, optical, wettability and photocatalytic properties of the films were studied. X-ray diffraction analysis confirmed the formation of an anatase TiO2 structure irrespective of the post-annealing temperatures. The optical transparency of the films in the visible range was measured to be > 70%. A water contact angle (WCA) of ~0° was observed for TiO2 thin-film, post-annealed at 400 °C and 500 °C. However, WCA of 40.3° was observed for post-annealed at 600 °C. The photocatalytic dye-degradation using post-annealed thin-film was investigated indicating a steady improvement in the dye-degradation percentage (from 24.3 to 29.4%) with the increase of post-annealing temperature. The demonstrated TiO2 thin-films deposited by wire-bar coating technique showed promises for the manufacturing of large-area cost-effective self-cleaning window glass.

2013 ◽  
Vol 667 ◽  
pp. 371-374 ◽  
Author(s):  
M. Basri ◽  
Mohd Nor Asiah ◽  
Mohd Khairul bin Ahmad ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop Mahmood

Titanium Dioxide (TiO2) thin films have been prepared on glass substrates by using sol-gel method and spin-coating technique. The samples have been annealed at temperatures of 350°C ~ 500oC. The electrical and structural properties of the thin films due to the changes of annealing treatment process were investigated by 2 point probes I-V measurement and X-ray Diffraction (XRD) respectively. The result show that resistivity of the thin film decreased with annealing temperatures. XRD characterization indicates crystalline structure of TiO2 thin films improved as annealed at higher temperatures.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1173
Author(s):  
Xiao-Ying Zhang ◽  
Yue Yang ◽  
Zhi-Xuan Zhang ◽  
Xin-Peng Geng ◽  
Chia-Hsun Hsu ◽  
...  

In this study, silicon oxide (SiO2) films were deposited by remote plasma atomic layer deposition with Bis(diethylamino)silane (BDEAS) and an oxygen/argon mixture as the precursors. Oxygen plasma powers play a key role in the quality of SiO2 films. Post-annealing was performed in the air at different temperatures for 1 h. The effects of oxygen plasma powers from 1000 W to 3000 W on the properties of the SiO2 thin films were investigated. The experimental results demonstrated that the SiO2 thin film growth per cycle was greatly affected by the O2 plasma power. Atomic force microscope (AFM) and conductive AFM tests show that the surface of the SiO2 thin films, with different O2 plasma powers, is relatively smooth and the films all present favorable insulation properties. The water contact angle (WCA) of the SiO2 thin film deposited at the power of 1500 W is higher than that of other WCAs of SiO2 films deposited at other plasma powers, indicating that it is less hydrophilic. This phenomenon is more likely to be associated with a smaller bonding energy, which is consistent with the result obtained by Fourier transformation infrared spectroscopy. In addition, the influence of post-annealing temperature on the quality of the SiO2 thin films was also investigated. As the annealing temperature increases, the SiO2 thin film becomes denser, leading to a higher refractive index and a lower etch rate.


2017 ◽  
Vol 9 (2) ◽  
pp. 6
Author(s):  
Diana Vanda Wellia

The photocatalytic properties of TiO2 compound in anatase phase can be activated under visible light by nitrogen modification and its ability can be increased by generated porous structure using polietilen glikol (PEG) on TiO2 thin film surface. The porous N/TiO2 thin films were prepared by heating aqueous peroxotitanate thin films by addition of polietilen glikol (PEG) deposited uniformly on superhydrophilic uncoated glass at 500 oC for 1 h. The result of X-ray diffraction (XRD) confirmed the resence of only anatase phase for all samples. The UV-Vis spectroscopy showed the synthesized porous N/TiO2 thin films exhibit the absorption in the visible range (400-500 nm). Photocatalytic activity of porous N/ TiO2 thin films were evaluated by using fourier transform-infrared spectroscopy (FTIR) to determine the ability of this photocatalyst for stearic acid degradation under visible light irradiation. The result showed that N/TiO2/PEG-2.1 thin film degraded the stearic acid was about 87,86%, which was 1,12 times higher than that of N-doped TiO2 and 9,9 times higher than that of undoped TiO2 thin film.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1416
Author(s):  
Endrika Widyastuti ◽  
Fu-Yang Xu ◽  
Chen-Tien Chiu ◽  
Jhen-Hau Jan ◽  
Jue-Liang Hsu ◽  
...  

A pure Ti target in Ar/O2 gas mixture was used to synthesize Ti3Ox thin film on a glass substrate by Reactive High-Power Impulse Magnetron Sputtering (HiPIMS) under different sputtering power (2 and 2.5 kW). The influence of HiPIMS parameters on thin films’ structural, morphological, chemical composition, optical and photocatalytic, and antibacterial properties was investigated. In this study, Ti3Ox thin films can be synthesized using the HiPIMS method without the post-annealing process. Two co-existence phases (hexagonal Ti3O and base-centered monoclinic Ti3O5 phases) existed on the Ti3Ox films. It is found that the peak intensity of (006) Ti3O hexagonal slightly increased as the sputtering power increased from 2 to 2.5 kW. The Ti3Ox thin-film bandgap values were 3.36 and 3.50 eV for 2 and 2.5 kW, respectively. The Ti3Ox films deposited at 2.5 kW showed good photocatalytic activity under UV light irradiation, with a higher methylene blue dye degradation rate than TiO2 thin films. The antibacterial study on Ti3Ox thin films exhibited a high inhibition percentage against E. coli and S. aureus. This study demonstrates that Ti3Ox thin films can promote high photocatalytic and antibacterial activity.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4564
Author(s):  
Azliza Azani ◽  
Dewi Suriyani Che Halin ◽  
Kamrosni Abdul Razak ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Marcin Nabiałek ◽  
...  

Modification has been made to TiO2 thin film to improve the wettability and the absorption of light. The sol-gel spin coating method was successfully used to synthesize GO/TiO2 thin films using a titanium (IV) isopropoxide (TTIP) as a precursor. Different amounts of polyethylene glycol (PEG) (20 to 100 mg) were added into the parent sol solution to improve the optical properties and wettability of the GO/TiO2 thin film. The effect of different amounts of PEG was characterized using X-ray diffraction (XRD) for the phase composition, scanning electron microscopy (SEM) for microstructure observation, atomic force microscopy (AFM) for the surface topography, ultraviolet–visible spectrophotometry (UV-VIS) for the optical properties and wettability of the thin films by measuring the water contact angle. The XRD analysis showed the amorphous phase. The SEM and AFM images revealed that the particles were less agglomerated and surface roughness increases from 1.21 × 102 to 2.63 × 102 nm when the amount of PEG increased. The wettability analysis results show that the water contact angle of the thin film decreased to 27.52° with the increase of PEG to 80 mg which indicated that the thin film has hydrophilic properties. The optical properties also improved significantly, where the light absorbance wavelength became wider and the band gap was reduced from 3.31 to 2.82 eV with the presence of PEG.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1802
Author(s):  
Dan Liu ◽  
Peng Shi ◽  
Yantao Liu ◽  
Yijun Zhang ◽  
Bian Tian ◽  
...  

La0.8Sr0.2CrO3 (0.2LSCO) thin films were prepared via the RF sputtering method to fabricate thin-film thermocouples (TFTCs), and post-annealing processes were employed to optimize their properties to sense high temperatures. The XRD patterns of the 0.2LSCO thin films showed a pure phase, and their crystallinities increased with the post-annealing temperature from 800 °C to 1000 °C, while some impurity phases of Cr2O3 and SrCr2O7 were observed above 1000 °C. The surface images indicated that the grain size increased first and then decreased, and the maximum size was 0.71 μm at 1100 °C. The cross-sectional images showed that the thickness of the 0.2LSCO thin films decreased significantly above 1000 °C, which was mainly due to the evaporation of Sr2+ and Cr3+. At the same time, the maximum conductivity was achieved for the film annealed at 1000 °C, which was 6.25 × 10−2 S/cm. When the thin films post-annealed at different temperatures were coupled with Pt reference electrodes to form TFTCs, the trend of output voltage to first increase and then decrease was observed, and the maximum average Seebeck coefficient of 167.8 µV/°C was obtained for the 0.2LSCO thin film post-annealed at 1100 °C. Through post-annealing optimization, the best post-annealing temperature was 1000 °C, which made the 0.2LSCO thin film more stable to monitor the temperatures of turbine engines for a long period of time.


2012 ◽  
Vol 512-515 ◽  
pp. 1736-1739
Author(s):  
Li Li Zhang ◽  
Guo Qiang Tan ◽  
Meng Cheng ◽  
Hui Jun Ren ◽  
Ao Xia

Fe(NO3)3•9H2O and Bi(NO3)3•5H2O were used as raw materials. BiFeO3 thin films were prepared by sol-gel method. The effects of annealing temperatures on the morphology and dielectric property of the thin films were studied. XRD results show that the multi-crystal thin films with pure phase are obtained when annealed at 500°C and 550°C. But annealing at 580°C will lead to the appearance of Bi2.46Fe5O12 phase.AFM images show that as the increase of annealing temperatures the surface toughness of the thin film is decreased, but the surface undulation of the thin films is decreased gradually. Within the frequency range of 1KHz~1MHz, the dielectric constant of BiFeO3 thin films is kept over 125 and it does not change very much from 500°C to 580°C. Annealed at 550°C, the BiFeO3 thin films with the lower loss are obtained. At 1MHz, the dielectric loss is 0.12.


2014 ◽  
Vol 895 ◽  
pp. 41-44
Author(s):  
Seiw Yen Tho ◽  
Kamarulazizi Ibrahim

In this work, the influences of plasma pre-treatment on polyethylene terephthalate (PET) substrate to the properties of ZnO thin film have been carried out. ZnO thin films were successfully grown on PET substrate by spin coating method. In order to study the effects of plasma pre-treatment, a comparison of treated and untreated condition was employed. Water contact angle measurement had been carried out for PET wettability study prior to ZnO thin film coating. Morphology study of ZnO thin film was performed by scanning probe microscope (SPM). Besides, optical study of the ZnO thin film was done by using UV-vis spectrophotometer. All the measured results show that plasma pre-treatment of PET substrate plays an important role in enhancing the wettability of PET and optical properties of the ZnO thin films. In conclusion, pre-treatment of PET surface is essential to produce higher quality ZnO thin film on this particular substrate in which would pave the way for the integration of future devices.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
Mohammad Hossein Habibi ◽  
Mohammad Khaledi Sardashti

Glass plate-supported nanostructure ZnO thin films were deposited by sol-gel spin coating. Films were preheated at275∘Cfor 10 minutes and annealed at 350, 450, and550∘Cfor 80 minutes. The ZnO thin films were transparent ca 80–90% in visible range and revealed that absorption edges at about 370 nm. Thec-axis orientation improves and the grain size increases which was indicated by an increase in intensity of the (002) peak at34.4∘in XRD corresponding to the hexagonal ZnO crystal. The photocatalytic degradation of X6G an anionic monoazo dye, in aqueous solutions, was investigated and the effects of some operational parameters such as the number of layer and reusability of ZnO nanostructure thin film were examined. The results showed that the five-layer coated glass surfaces have a very high photocatalytic performance.


2021 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Dewi Suriyani Che Halin ◽  
Kamrosni Abdul Razak ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Mohd Izrul Izwan Ramli ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
...  

Ag/TiO2 thin films were prepared using the sol-gel spin coating method. The microstructural growth behaviors of the prepared Ag/TiO2 thin films were elucidated using real-time synchrotron radiation imaging, its structure was determined using grazing incidence X-ray diffraction (GIXRD), its morphology was imaged using the field emission scanning electron microscopy (FESEM), and its surface topography was examined using the atomic force microscope (AFM) in contact mode. The cubical shape was detected and identified as Ag, while the anatase, TiO2 thin film resembled a porous ring-like structure. It was found that each ring that coalesced and formed channels occurred at a low annealing temperature of 280 °C. The energy dispersive X-ray (EDX) result revealed a small amount of Ag presence in the Ag/TiO2 thin films. From the in-situ synchrotron radiation imaging, it was observed that as the annealing time increased, the growth of Ag/TiO2 also increased in terms of area and the number of junctions. The growth rate of Ag/TiO2 at 600 s was 47.26 µm2/s, and after 1200 s it decreased to 11.50 µm2/s and 11.55 µm2/s at 1800 s. Prolonged annealing will further decrease the growth rate to 5.94 µm2/s, 4.12 µm2/s and 4.86 µm2/s at 2400 s, 3000 s and 3600 s, respectively.


Sign in / Sign up

Export Citation Format

Share Document