scholarly journals An Analysis of Oxidative Changes and the Fatty Acid Profile in Stored Poultry Sausages with Liquid and Microencapsulated Fish Oil Additives

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4293
Author(s):  
Krzysztof Kawecki ◽  
Jerzy Stangierski ◽  
Piotr Konieczny

This study deals with the fatty acid profile and oxidative changes (TBARS) in vacuum-packed (VP) or modified-atmosphere-packed (MAP) finely-comminuted poultry sausages with liquid fish oil and microencapsulated fish oil (MC) additives. An analysis of omega-3 fatty acids (EPA and DHA) showed that their content in the samples with the fish oil additive decreased from the initial value of 0.22 g∙100 g−1 of the product to 0.18 g∙100 g−1 (MAP) and 0.17 g∙100 g−1 (VP), respectively. After in vitro digestion, the total EPA and DHA content in the sample with microencapsulated oil amounted to 0.17 g∙100 g−1 of the product. The TBARS values showed the VP samples with both forms of the fish oil additive had the lowest values on the first day of storage. Storage of the samples for 21 days caused a slight increase in the degree of lipid oxidation. The research indicated that the forms of the oil additive did not have a negative influence on the sensory features or the physicochemical properties of the sausages. The EPA and DHA levels in samples with liquid fish oil and those with oil microcapsules were sufficient for the sausage producer to declare high content of these fatty acids in accordance with the current EC regulation.

2018 ◽  
Vol 85 (2) ◽  
pp. 257-262 ◽  
Author(s):  
Antonella Santillo ◽  
Lucia Figliola ◽  
Maria G Ciliberti ◽  
Mariangela Caroprese ◽  
Rosaria Marino ◽  
...  

We report the fatty acid profile of raw milk and of the corresponding digested milk from different sources (human milk, formula milk and donkey, bovine, ovine and caprine milk) to gain information on the nutritional quality of different milk sources in infant nutrition.Short chain fatty acids (SC-FA) were higher in bovine and caprine milk, intermediate in ovine and donkey and lower in human and formula milk. Medium chain fatty acids (MC-FA) showed the highest values for bovine and caprine milk and the lowest for donkey and formula milk, whereas long chain fatty acids (LC-FA) were the highest in donkey and formula milk and intermediate in human milk.The percentage distribution of fatty acids liberated after in vitro digestion did not reflect the patterns found in the corresponding milk sources. In particular, MC free fatty acids (MC-FFA) showed the highest and the lowest values in donkey and in formula milk, LC-FFA showed the highest value in human milk. The total FFA was highest in human milk, lowest in formula milk and intermediate in donkey, bovine, ovine, and caprine milk.


2014 ◽  
Vol 4 (1) ◽  
pp. 31-39
Author(s):  
Siwitri Kadarsih

The objective was to get beef that contain unsaturated fatty acids (especially omega 3 and 6), so as to improve intelligence, physical health for those who consume. The study design using CRD with 3 treatments, each treatment used 4 Bali cattle aged approximately 1.5 years. Observations were made 8 weeks. Pasta mixed with ginger provided konsentrat. P1 (control); P2 (6% saponification lemuru fish oil, olive oil 1%; rice bran: 37.30%; corn: 62.70%; KLK: 7%, ginger paste: 100 g); P3 (lemuru fish oil saponification 8%, 2% olive oil; rice bran; 37.30; corn: 62.70%; KLK: 7%, ginger paste: 200 g). Konsentrat given in the morning as much as 1% of the weight of the cattle based on dry matter, while the grass given a minimum of 10% of the weight of livestock observation variables include: fatty acid composition of meat. Data the analyzies qualitative. The results of the study showed that the composition of saturated fatty acids in meat decreased and an increase in unsaturated fatty acids, namely linoleic acid (omega 6) and linolenic acid (omega 3), and deikosapenta deikosaheksa acid.Keywords : 


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1811
Author(s):  
Ella Aitta ◽  
Alexis Marsol-Vall ◽  
Annelie Damerau ◽  
Baoru Yang

Baltic herring (Clupea harengus membras) is one of the most abundant commercially caught fish species from the Baltic Sea. Despite the high content of fat and omega-3 fatty acids, the consumption of Baltic herring has decreased dramatically over the last four decades, mostly due to the small sizes and difficulty in processing. At the same time there is an increasing global demand for fish and fish oil rich in omega-3 fatty acids. This study aimed to investigate enzyme-assisted oil extraction as an environmentally friendly process for valorizing the underutilized fish species and by-products to high quality fish oil for human consumption. Three different commercially available proteolytic enzymes (Alcalase®, Neutrase® and Protamex®) and two treatment times (35 and 70 min) were investigated in the extraction of fish oil from whole fish and by-products from filleting of Baltic herring. The oil quality and stability were studied with peroxide- and p-anisidine value analyses, fatty acid analysis with GC-FID, and volatile compounds with HS-SPME-GC-MS. Overall, longer extraction times led to better oil yields but also increased oxidation of the oil. For whole fish, the highest oil yields were from the 70-min extractions with Neutrase and Protamex. Protamex extraction with 35 min resulted in the best fatty acid composition with the highest content of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) but also increased oxidation compared to treatment with other enzymes. For by-products, the highest oil yield was obtained from the 70-min extraction with Protamex without significant differences in EPA and DHA contents among the oils extracted with different enzymes. Oxidation was lowest in the oil produced with 35-min treatment using Neutrase and Protamex. This study showed the potential of using proteolytic enzymes in the extraction of crude oil from Baltic herring and its by-products. However, further research is needed to optimize enzymatic processing of Baltic herring and its by-products to improve yield and quality of crude oil.


2015 ◽  
Vol 22 (3) ◽  
pp. 153-162 ◽  
Author(s):  
Juçara X. Zaparoli ◽  
Eduardo K. Sugawara ◽  
Altay A.L. de Souza ◽  
Sérgio Tufik ◽  
José Carlos F. Galduróz

Background: High oxidative stress, which is caused by smoking, can alter omega-3 fatty acid concentrations. Since omega-3 fatty acids play a role in dopaminergic neurotransmission related to dependence, it is important to understand their effects on nicotine dependence. Methods: This research comprised 2 studies. The first one consisted of a cross-sectional evaluation, in which the levels of the most important omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), were compared between smokers and non-smokers in a sample of 171 individuals; of them, 120 were smokers and 51 were non-smokers. The other study was a clinical, double-blind, randomized, placebo controlled, in which 63 smokers received daily treatment with capsules of fish oil (a source of omega-3/3 g/day) or mineral oil (used as placebo, also 3 g/day), taken 3 times a day for 90 days. Each fish oil capsules contained approximately 210.99 mg EPA and 129.84 mg of DHA. The outcome was evaluated by means of psychometric and biological measures as well as self-reports of tobacco use. The evaluations were carried out at the beginning of treatment and once a month thereafter (total of 4 times). Outcomes: The omega-3 fatty acid lipid profile showed that smokers present lower concentrations of DHA. After treatment, the omega-3 group showed a significant reduction in their levels of dependence. Interpretation: Smokers showed lower peripheral levels of omega-3, and treatment with the most important omega-3 fatty acids brought about a reduction in nicotine dependence.


Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1784
Author(s):  
Eliana Martínez-Padilla ◽  
Kexin Li ◽  
Heidi Blok Frandsen ◽  
Marcel Skejovic Joehnke ◽  
Einar Vargas-Bello-Pérez ◽  
...  

Plant-based milk alternatives (PBMA) are a new popular food trend among consumers in Europe and North America. The forecast shows that PBMA will double their value by 2023. The objective of this study was to analyze the nutritional value of commercial products in terms of their fatty acid profile and protein digestibility from commercial PBMA. Eight commercially available PBMA were selected for fatty acid analysis, performed with gas chromatography of methylated fatty acids (GC-FAME), and, from these, four commercial products (almond drink, hemp drink, oat drink, and soy drink) were selected for a short-term in vitro protein digestibility (IVPD) analysis. The fatty acid analysis results showed that most of the products predominantly contained oleic acid (C18:1 ω-9) and linoleic acid (C18:2 ω-6). Hemp drink contained the highest omega-6/omega-3 (ω6/ω3) ratio among all tested products (3.43). Oat drink and almond drink were the PBMA with the highest short-term protein digestibility, non-significantly different from cow’s milk, while soy drink showed the lowest value of protein digestibility. In conclusion, PBMA showed a significant variability depending on the plant source, both in terms of fatty acid composition and protein digestibility. These results provide more in-depth nutritional information, for future product development, and for consumer’s choice.


2001 ◽  
Vol 2001 ◽  
pp. 199-199 ◽  
Author(s):  
C. Rymer ◽  
C. Dyer ◽  
D.I. Givens ◽  
R. Allison

The dietary essential fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are predominantly found in fish oil, but fish consumption in the UK is low. Increasing the yield of EPA and DHA in cows’ milk would increase human intakes of EPA and DHA, and this can be achieved by including fish oil in cows’ diets. However, because EPA and DHA are susceptible to rumen biohydrogenation, their transfer efficiency into milk is low.In vitroobservations by Gulatiet al. (1999) suggested that if the concentration of fish oil in the rumen exceeded 1 mg/ml, EPA and DHA were not hydrogenated. The objectives of this study were therefore to determine the relationships between fish oil intake by dairy cows, and the probable concentrations of fish oil in the cows’ rumen, with the yield of EPA and DHA in their milk.


2006 ◽  
Vol 52 (12) ◽  
pp. 2265-2272 ◽  
Author(s):  
Jing Cao ◽  
Kerry A Schwichtenberg ◽  
Naomi Q Hanson ◽  
Michael Y Tsai

Abstract Background: The sum of eicosapentaenoic acid (EPA, 20:5 ω3) and docosahexaenoic acid (DHA, 22:6 ω3) in erythrocyte membranes, termed the omega-3 index, can indicate suboptimal intake of omega-3 fatty acids, a risk factor for cardiovascular disease (CVD). To study the effects of fatty acid supplementation, we investigated the rate of incorporation and clearance of these fatty acids in erythrocyte membranes and plasma after intake of supplements. Methods: Twenty study participants received supplementation with either fish oil (1296 mg EPA + 864 mg DHA/day) or flaxseed oil (3510 mg alpha-linolenic acid + 900 mg linoleic acid/day) for 8 weeks. We obtained erythrocyte membrane and plasma samples at weeks 0, 4, 8, 10, 12, 14, 16, and 24 and extracted and analyzed fatty acids by gas chromatography. Results: After 8 weeks of fish oil supplementation, erythrocyte membrane EPA and DHA increased 300% (P <0.001) and 42% (P <0.001), respectively. The mean erythrocyte omega-3 index reached a near optimal value of 7.8%, and remained relatively high until week 12. EPA and DHA showed greater increases and more rapid washout period decreases in plasma phospholipids than in erythrocyte membranes. Flaxseed oil supplementation increased erythrocyte membrane EPA to 133% (P <0.05) and docosapentaenoic acid (DPA, 22:5 ω3) to 120% (P <0.01) of baseline, but DHA was unchanged. In plasma phospholipids, EPA, DPA, and DHA showed a slight but statistically insignificant increase. Conclusions: Erythrocyte membrane EPA+DHA increases during relatively short intervals in response to supplementation at rates related to amount of supplementation. These results may be useful to establish appropriate dosage for omega-3 fatty acid supplementation.


2020 ◽  
Vol 9 (3) ◽  
pp. 232
Author(s):  
Januar Hadi Prasetyo ◽  
Agustono Agustono ◽  
Widya Paramitha Lokapirnasari

Omega-3 fatty acids (Alpha-linolenic acid) and omega-6 fatty acids (Linoleic acid) are a group of essential fatty acids. Essential fatty acids are fatty acids that cannot be synthesized by the body so that must be supplied from the diet. One of the sources of essential fatty acids is derived from fish oil. This study aims to determine the effect of Crude Fish Oil (CFO) in the feed to EPA and DHA content in penaeid shrimp meat. The research method used was a completely randomized design. The treatments used are the varying content of Crude Fish Oil (CFO), which are P0 (0%), P1 (2%), P2 (4%), P3 (6%), and P4 (8%). The results of the study showed significant differences (p <0.05) on the content of EPA and DHA in penaeid shrimp meat. The highest content of EPA and DHA found in P4 treatment (8%) and the lowest at P0 treatment (0%). The use of CFO in penaeid shrimp feed need further study related to the growth of shrimps and prawns reproductive cycle to increase the productivity of penaeid shrimp. CFO on feed should be used at a dose of 6%.


2006 ◽  
Vol 95 (6) ◽  
pp. 1199-1211 ◽  
Author(s):  
I. Wąsowska ◽  
M. R. G. Maia ◽  
K. M. Niedźwiedzka ◽  
M. Czauderna ◽  
J. M. C. Ramalho Ribeiro ◽  
...  

Dietarycis-9,trans-11-conjugated linoleic acid (CLA) is generally thought to be beneficial for human health. Fish oil added to ruminant diets increases the CLA concentration of milk and meat, an increase thought to arise from alterations in ruminal biohydrogenation of unsaturated fatty acids. To investigate the mechanism for this effect,in vitroincubations were carried out with ruminal digesta and the main biohydrogenating ruminal bacterium,Butyrivibrio fibrisolvens. Linoleic acid (LA) or α-linolenic acid (LNA) was incubated (1·67g/l) with strained ruminal digesta from sheep receiving a 50:50 grass hay–concentrate ration. Adding fish oil (up to 4·17g/l) tended to decrease the initial rate of LA (P=0·025) and LNA (P=0·137) disappearance, decreased (P<0·05) the transient accumulation of conjugated isomers of both fatty acids, and increased (P<0·05) the accumulation oftrans-11-18:1. Concentrations of EPA (20:5n-3) or DHA (22:6n-3), the major fatty acids in fish oil, were low (100mg/l or less) after incubation of fish oil with ruminal digesta. Addition of EPA or DHA (50mg/l) to pure cultures inhibited the growth and isomerase activity ofB. fibrisolvens, while fish oil had no effect. In contrast, similar concentrations of EPA and DHA had no effect on biohydrogenation of LA by mixed digesta, while the addition of LA prevented metabolism of EPA and DHA. Neither EPA nor DHA was metabolised byB. fibrisolvensin pure culture. Thus, fish oil inhibits ruminal biohydrogenation by a mechanism which can be interpreted partly, but not entirely, in terms of its effects onB. fibrisolvens.


2017 ◽  
Vol 17 (1) ◽  
pp. 23-40 ◽  
Author(s):  
Jan Knapik ◽  
Katarzyna Ropka-Molik ◽  
Marek Pieszka

Abstract In the last 20 years, the importance of sheep and especially lamb meat as the main product of the sheep industry in European conditions increased noticeably. In the same period, people’s interest in food quality grew. This contributed to a significant intensification of research to improve the meat production and quality traits in sheep. The aim of the research performed mainly focuses on the effects of nutrition, the environmental and genetic factors on the value of fattening, slaughter and meat quality characteristics. Much of the research concentrates on determining the fatty acid profile of intramuscular fat, which is important for sensory traits and dietetic value of lamb. Modulation of healthy qualities of lamb is aimed, inter alia, to modify the fatty acid profile, in particular to maintain the proper ratio of polyunsaturated (PUFA ) to saturated fatty acids (SFA). It is also desirable to increase the content of omega-3 fatty acids and conjugated linoleic acid (CLA). Furthermore, it has been proven that changes in the expression of genes involved in lipid metabolism are associated with the change in lipid profile in skeletal muscle. The aim of this review was to summarize the information currently available about the influence of genetic and nutritional factors on meat production and quality traits in different sheep breeds.


Sign in / Sign up

Export Citation Format

Share Document