scholarly journals Exploring Effects of Protease Choice and Protease Combinations in Enzymatic Protein Hydrolysis of Poultry By-Products

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5280
Author(s):  
Diana Lindberg ◽  
Kenneth Aase Kristoffersen ◽  
Sileshi Gizachew Wubshet ◽  
Linn Maria Gundersen Hunnes ◽  
Marte Dalsnes ◽  
...  

A study of the effects of single and combined protease hydrolysis on myofibrillar versus collagenous proteins of poultry by-products has been conducted. The aim was to contribute with knowledge for increased value creation of all constituents of these complex by-products. A rational approach was implemented for selecting proteases exhibiting the most different activity towards the major protein-rich constituents of mechanically deboned chicken residue (MDCR). An initial activity screening of 18 proteases on chicken meat, turkey tendons and MDCR was conducted. Based on weight yield, size exclusion chromatography (SEC) and SDS-PAGE, stem Bromelain and Endocut-02 were selected. Studies on hydrolysis of four different poultry by-products at 40 °C, evaluated by protein yield, SEC, and SDS-PAGE, indicate that the proteases’ selectivity difference can be utilized in tailor-making hydrolysates, enriched in either meat- and collagen-derived peptides or gelatin. Three modes of stem Bromelain and Endocut-02 combinations during hydrolysis of MDCR were performed and compared with single protease hydrolysis. All modes of the protease combinations resulted in a similar approximately 15% increase in product yield, with products exhibiting similar SEC and SDS-PAGE profiles. This shows that irrespective of the modes of combination, the use of more than one enzyme in hydrolysis of collagen-rich material can provide means to increase the total protein yield and ultimately contribute to increased value creation of poultry by-products.

2018 ◽  
Vol 22 (2) ◽  
pp. 57
Author(s):  
Ratih Asmana Ningrum ◽  
Widdya Kusuma Wardhani ◽  
Ike Wahyuni ◽  
Apon Zaenal Mustopa

     Recombinant Human Interferon Alpha-2a (rhIFNα-2a) is a therapeutic protein that used in hepatitis and cancer treatments. In our previous research, we developed higher molecular weight of the protein through human serum albumin fusion. The fusion and non fusion form of rhIFNα-2a were produced in Pichia pastoriswith 86 kDa and 19 kDa in size respectively. In previous research, protein yield was not reproducible due to unoptimized expression conditions. This reseach was aimed to optimize expression condition process and to characterize the fusion and non fusion forms of rhIFNα-2a. The parameters to observe in overproduction include nutrient (media and methanol concentration) and non nutrient (temperature andincubation period). Affinity and size exclusion cromatographicwere compared in protein purification. BCA assay was used to determine quantity of protein. Protein characterization was conducted using two-dimensional SDS PAGE and denaturation analyses. The optimal condition of expression was achieved using complex media with 1% of methanol for 3 day incubation period at 25°C. The protein yield was reproducible and higher comparing to previous research. Affinity chromatography resulted in higher purity of the proteins comparing to size exclusions. Characterization using two dimensional gel analysis revealed that isoelectric point of rhIFNα-2a is 6.5 for fusion form and 6.0 for non fusion form. The melting points of fusion protein were 56°C and 62°C whilst that of non fusion was 56°C.


2000 ◽  
Vol 27 (5) ◽  
pp. 417 ◽  
Author(s):  
Roberta Donadini ◽  
Les Copeland

Acetohydroxy acid reductoisomerase (EC 1.1.1.86, AHAR) was purified to a high degree from green shoots of wheat (Triticum aestivum L. cv. Vulcan). The enzyme was localised in the chloroplasts, and activity was at a maximum approximately 4 d after germination. The subunit molecular mass of wheat AHAR was 57 kD and activity of the native enzyme had an elution volume from size exclusion columns that corresponded to a molecular mass of 47 kD. The enzyme did not require the addition of Mg 2+ ions to reaction mixtures for activity. The Km values for (R,S)-2-acetolactate and (R,S)-2-aceto-2-hydroxybutyrate were 91 and 9 mM, respectively, and the corresponding maximum velocities were 430 and 451 mU mg –1 protein. The Km for NADPH was approximately 10 mM when either of the acetohydroxy acids was the other substrate. Preparation of the acetohydroxy acid substrates by hydrolysis of the parent esters in strong base led to the formation of inhibitory by-products. Racemisation of the acetohydroxy acids was detected in assay mixtures.


2018 ◽  
Vol 69 (7) ◽  
pp. 1649-1654 ◽  
Author(s):  
Mariana Daniela Berechet ◽  
Mihaela Doina Niculescu ◽  
Carmen Gaidau ◽  
Madalina Ignat ◽  
Doru Gabriel Epure

Wool waste represents a valuable and renewable material with low level of valorization and high potential to be integrated in bioeconomy. The extraction of keratin from wool by-products generated by sheep breeders and furskin industry represents a valuable approach for reducing the environmental pollution with organic and heavy biodegradable waste and a possibility to use a renewable product in agriculture or different industries. Keratin hydrolysates were obtained by alkaline and alkaline-enzymatic hydrolysis with extraction yields of 16.4-43.5%. The obtained keratin hydrolysates were characterized by physical-chemical analysis (dry substance, nitrogen content, pH, ash etc), FT-IR spectra, Dynamic Light Scattering (DLS), electrophoresis (SDS-PAGE) and surface tension (VCA Optima XE). Alkaline and alkaline-enzymatic hydrolyses of wool waste showed the possibility to obtain different keratin polypeptides with suitable properties for application in leather industry or in agriculture.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Takako Furusawa ◽  
Yasuko Arai ◽  
Kenji Kato ◽  
Kenji Ichihara

Apisin, a protein that is unique to royal jelly (RJ), is known to compose the greater part of the RJ proteins and to exist as a heterooligomer containing major royal jelly protein 1 and apisimin. However, few reports on the methods for quantifying apisin have been published. Thus, we attempted to quantify apisin using HPLC, a widely used analytical technique, as described below. Isoelectric precipitation and size-exclusion chromatography were used to obtain the purified protein, which was identified as apisin by SDS-PAGE and LC-MS analyses. The purified apisin was lyophilized and then used to generate a calibration curve to quantify apisin in RJ. The apisin content was fairly constant (i.e., 3.93 to 4.67 w/w%) in natural RJ. This study is the first to describe a simple, standardized method for quantifying apisin using HPLC and suggests that apisin can be used as a benchmark for future evaluations of RJ quality.


2019 ◽  
Author(s):  
Buddhika Dorakumbura ◽  
Francesco Busetti ◽  
Simon Lewis

<p>Transformation of squalene and its by-products in fingermarks over time under different storage conditions (light, dark and underwater) was examined through ultrahigh-pressure liquid chromatography high resolution accurate mass Orbitrap™ mass spectrometry. Complications of assessing fingermark compositional variation over time using multiple samples with varying initial compositions were elucidated and a more rational approach was successfully demonstrated. Squalene was detected in all fresh natural fingermarks and the amount ranged between 0.20 to 11.32 μg/5 fingertips. A notable difference in the transformation of squalene was observed with different storage conditions, where a dark aquatic environment accelerated degradation of squalene compared to dark but dry conditions. Squalene monohydroperoxide was extremely short-lived in natural deposits while the amount of squalene epoxide was still increasing relative to the initial amount, after ageing under dark and aquatic conditions for up to 7 days. Some oxidation by-products of cholesterol were also tentatively identified, which exhibited a growth over time against their initial concentration under any of the storage condition tested. These by-products, therefore, show potential as biomarkers for targeted visualisation of aged deposits.</p>


2003 ◽  
Vol 49 (10) ◽  
pp. 625-632 ◽  
Author(s):  
Claudia Masini d'Avila-Levy ◽  
Rodrigo F Souza ◽  
Rosana C Gomes ◽  
Alane B Vermelho ◽  
Marta H Branquinha

Actively motile cells from a cured strain of Crithidia deanei released proteins in phosphate buffer (pH 7.4). The molecular mass of the released polypeptides, which included some proteinases, ranged from 19 to 116 kDa. One of the major protein bands was purified to homogeneity by a combination of anion-exchange and gel filtration chromatographs. The apparent molecular mass of this protein was estimated to be 62 kDa by sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS–PAGE). The incorporation of gelatin into SDS–PAGE showed that the purified protein presented proteolytic activity in a position corresponding to a molecular mass of 60 kDa. The enzyme was optimally active at 37 °C and pH 6.0 and showed 25% of residual activity at 28 °C for 30 min. The proteinase was inhibited by 1,10-phenanthroline and EDTA, showing that it belonged to the metalloproteinase class. A polyclonal antibody to the leishmanial gp63 reacted strongly with the released C. deanei protease. After Triton X-114 extraction, an enzyme similar to the purified metalloproteinase was detected in aqueous and detergent-rich phases. The detection of an extracellular metalloproteinase produced by C. deanei and some other Crithidia species suggests a potential role of this released enzyme in substrate degradation that may be relevant to the survival of trypanosomatids in the host.Key words: endosymbiont, trypanosomatid, extracellular, proteinase.


1991 ◽  
Vol 260 (6) ◽  
pp. G865-G872 ◽  
Author(s):  
C. J. Chandler ◽  
D. A. Harrison ◽  
C. A. Buffington ◽  
N. A. Santiago ◽  
C. H. Halsted

To determine the functional specificity of intestinal brush-border pteroylpolyglutamate hydrolase (PPH), we compared the regional location of in vivo hydrolysis of pteroyltriglutamate (PteGlu3) with the location of activity and immunoreactivity of the enzyme in the pig. After in vivo incubations, PteGlu3 hydrolytic products were recovered from intestinal segments in the jejunum but not from the ileum. Brush-border PPH activity in fractionated mucosa was 10-fold greater in the jejunum than in the ileum, whereas the activity of intracellular PPH was increased in the distal ileum. Antibodies to purified brush-border PPH identified a major protein band at 120 kDa and a minor protein band at 195 kDa in solubilized jejunal brush border. Immunohistochemistry identified the enzyme only on the brush-border surface of the jejunum, whereas an immunoblot of solubilized brush-border membranes identified brush-border PPH in the jejunum but not in the ileum. The parallel of the regional location of in vivo hydrolysis of PteGlu3 with the location of brush-border PPH activity and immunoreactivity demonstrates the functional specificity of this enzyme in folate digestion.


2000 ◽  
Vol 66 (1) ◽  
pp. 252-256 ◽  
Author(s):  
Katsuichi Saito ◽  
Kazuya Kondo ◽  
Ichiro Kojima ◽  
Atsushi Yokota ◽  
Fusao Tomita

ABSTRACT Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60°C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50°C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only β-2,6-linkage of levan, but also β-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-β-d-fructan 6-levanbiohydrolase (EC 3.2.1.64 ).


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1343
Author(s):  
Mpho S. Mafa ◽  
Brett I. Pletschke ◽  
Samkelo Malgas

Lignocellulose has economic potential as a bio-resource for the production of value-added products (VAPs) and biofuels. The commercialization of biofuels and VAPs requires efficient enzyme cocktail activities that can lower their costs. However, the basis of the synergism between enzymes that compose cellulolytic enzyme cocktails for depolymerizing lignocellulose is not understood. This review aims to address the degree of synergism (DS) thresholds between the cellulolytic enzymes and how this can be used in the formulation of effective cellulolytic enzyme cocktails. DS is a powerful tool that distinguishes between enzymes’ synergism and anti-synergism during the hydrolysis of biomass. It has been established that cellulases, or cellulases and lytic polysaccharide monooxygenases (LPMOs), always synergize during cellulose hydrolysis. However, recent evidence suggests that this is not always the case, as synergism depends on the specific mechanism of action of each enzyme in the combination. Additionally, expansins, nonenzymatic proteins responsible for loosening cell wall fibers, seem to also synergize with cellulases during biomass depolymerization. This review highlighted the following four key factors linked to DS: (1) a DS threshold at which the enzymes synergize and produce a higher product yield than their theoretical sum, (2) a DS threshold at which the enzymes display synergism, but not a higher product yield, (3) a DS threshold at which enzymes do not synergize, and (4) a DS threshold that displays anti-synergy. This review deconvolutes the DS concept for cellulolytic enzymes, to postulate an experimental design approach for achieving higher synergism and cellulose conversion yields.


1995 ◽  
Vol 42 (3) ◽  
pp. 351-356 ◽  
Author(s):  
M Warwas ◽  
J Gburek ◽  
J Osada ◽  
K Gołab

It is the second peptidase inhibitor, after ovostatin, which showing the same antipapain activity in egg white in different avian species implies differences in amino-acid sequences. Cystatin from duck egg white was purified by carboxymethylpapain affinity chromatography and size-exclusion HPLC. The purified inhibitor which showed partial identity in the immunodiffusion test with chicken egg white cystatin, had an apparent molecular mass of 9.3 kDa as determined by SDS/PAGE. IEF analysis revealed five molecular forms of pI in the range 7.8-8.4. The obtained cystatin was neither glycosylated nor phosphorylated as it is in the case of chicken cystatin. The determined Ki (0.005 +/- 0.001 nM) was similar to that reported for human and chicken cystatin C.


Sign in / Sign up

Export Citation Format

Share Document