scholarly journals New Models to Predict the Acute and Chronic Toxicities of Representative Species of the Main Trophic Levels of Aquatic Environments

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6983
Author(s):  
Cosimo Toma ◽  
Claudia I. Cappelli ◽  
Alberto Manganaro ◽  
Anna Lombardo ◽  
Jürgen Arning ◽  
...  

To assess the impact of chemicals on an aquatic environment, toxicological data for three trophic levels are needed to address the chronic and acute toxicities. The use of non-testing methods, such as predictive computational models, was proposed to avoid or reduce the need for animal models and speed up the process when there are many substances to be tested. We developed predictive models for Raphidocelis subcapitata, Daphnia magna, and fish for acute and chronic toxicities. The random forest machine learning approach gave the best results. The models gave good statistical quality for all endpoints. These models are freely available for use as individual models in the VEGA platform and for prioritization in JANUS software.

2019 ◽  
Vol 97 ◽  
pp. 04022
Author(s):  
Nikolay Trekin ◽  
Emil Kodysh ◽  
Alexander Bybka ◽  
Alexander Yamalov ◽  
Nikita Konkov

The article provides an analysis and justification of the need to take into account the compliance of discs of overlapping and coatings when calculating frames from precast concrete structures. Previously conducted full-scale experiments showed that the rigidity of the precast overlapping with full filling of the seams, in comparison with the monolithic overlapping, decreases by 3-15 times due to the ductility of the joints. The use of refined computational models of structural solutions for frames, which take into account the compliance of the conjugations of elements, makes it possible to trace possible redistribution of efforts. Such an approach when reconstructing, it is possible to optimally select and calculate the enforcement of structure, and on new designing, to increase reliability and / or improve the economic performance of frame buildings. According to the results of analytical studies, formulas were adopted for the parameters that allow one to take into account the overall compliance of overlapping disks and coatings in computational models of building frames. Numerical studies on the computational model of a frame building made it possible to evaluate the effect of accounting for compliance on the stress-strain state of a multi-storey frame.


Author(s):  
Yoichi Imori ◽  
Ken Kato ◽  
Victoria L. Cammann ◽  
Konrad A. Szawan ◽  
Manfred Wischnewsky ◽  
...  

Abstract Background Ethnic disparities have been reported in cardiovascular disease. However, ethnic disparities in takotsubo syndrome (TTS) remain elusive. This study assessed differences in clinical characteristics between Japanese and European TTS patients and determined the impact of ethnicity on in-hospital outcomes. Methods TTS patients in Japan were enrolled from 10 hospitals and TTS patients in Europe were enrolled from 32 hospitals participating in the International Takotsubo Registry. Clinical characteristics and in-hospital outcomes were compared between Japanese and European patients. Results A total of 503 Japanese and 1670 European patients were included. Japanese patients were older (72.6 ± 11.4 years vs. 68.0 ± 12.0 years; p < 0.001) and more likely to be male (18.5 vs. 8.4%; p < 0.001) than European TTS patients. Physical triggering factors were more common (45.5 vs. 32.0%; p < 0.001), and emotional triggers less common (17.5 vs. 31.5%; p < 0.001), in Japanese patients than in European patients. Japanese patients were more likely to experience cardiogenic shock during the acute phase (15.5 vs. 9.0%; p < 0.001) and had a higher in-hospital mortality (8.2 vs. 3.2%; p < 0.001). However, ethnicity itself did not appear to have an impact on in-hospital mortality. Machine learning approach revealed that the presence of physical stressors was the most important prognostic factor in both Japanese and European TTS patients. Conclusion Differences in clinical characteristics and in-hospital outcomes between Japanese and European TTS patients exist. Ethnicity does not impact the outcome in TTS patients. The worse in-hospital outcome in Japanese patients, is mainly driven by the higher prevalence of physical triggers. Trial Registration URL: https://www.clinicaltrials.gov; Unique Identifier: NCT01947621.


Author(s):  
James W. E. Dickey ◽  
Neil E. Coughlan ◽  
Jaimie T. A. Dick ◽  
Vincent Médoc ◽  
Monica McCard ◽  
...  

AbstractThe influence of climate change on the ecological impacts of invasive alien species (IAS) remains understudied, with deoxygenation of aquatic environments often-overlooked as a consequence of climate change. Here, we therefore assessed how oxygen saturation affects the ecological impact of a predatory invasive fish, the Ponto-Caspian round goby (Neogobius melanostomus), relative to a co-occurring endangered European native analogue, the bullhead (Cottus gobio) experiencing decline in the presence of the IAS. In individual trials and mesocosms, we assessed the effect of high, medium and low (90%, 60% and 30%) oxygen saturation on: (1) functional responses (FRs) of the IAS and native, i.e. per capita feeding rates; (2) the impact on prey populations exerted; and (3) how combined impacts of both fishes change over invasion stages (Pre-invasion, Arrival, Replacement, Proliferation). Both species showed Type II potentially destabilising FRs, but at low oxygen saturation, the invader had a significantly higher feeding rate than the native. Relative Impact Potential, combining fish per capita effects and population abundances, revealed that low oxygen saturation exacerbates the high relative impact of the invader. The Relative Total Impact Potential (RTIP), modelling both consumer species’ impacts on prey populations in a system, was consistently higher at low oxygen saturation and especially high during invader Proliferation. In the mesocosm experiment, low oxygen lowered RTIP where both species were present, but again the IAS retained high relative impact during Replacement and Proliferation stages at low oxygen. We also found evidence of multiple predator effects, principally antagonism. We highlight the threat posed to native communities by IAS alongside climate-related stressors, but note that solutions may be available to remedy hypoxia and potentially mitigate impacts across invasion stages.


2020 ◽  
Vol 13 (1) ◽  
pp. 255
Author(s):  
Luciano C. de Faria ◽  
Marcelo A. Romero ◽  
Lúcia F. S. Pirró

Improving indoor environment quality and making urban centres in tropical regions more sustainable has become a challenge for which computational models for the prediction of thermal sensation for naturally ventilated buildings (NVBs) have major role to play. This work performed analysis on thermal sensation for non-residential NVBs located in Brazilian tropical warm-humid climate and tested the effectiveness of suggested adaptive behaviours to mitigate warm thermal sensation. The research method utilized transient computational fluid dynamics models coupled with a dynamic model for human thermophysiology to predict thermal sensation. The calculated results were validated with comparison with benchmark values from questionnaires and from field measurements. The calculated results for dynamic thermal sensation (DTS) seven-point scale showed higher agreement with the thermal sensation vote than with the predicted mean vote. The test for the suggested adaptive behaviours considered reducing clothing insulation values from 0.18 to 0.32 clo (reducing DTS from 0.1 to 0.9), increasing the air speed in 0.9 m/s (reducing DTS from 0.1 to 0.9), and applying both suggestions together (reducing DTS from 0.1 to 1.3) for five scenarios with operative temperatures spanning 34.5–24.0 °C. Results quantified the tested adaptive behaviours’ efficiency showing applicability to improve thermal sensation from slightly-warm to neutral.


2021 ◽  
Vol 9 (1) ◽  
pp. 194
Author(s):  
Nathan E. Wideman ◽  
James D. Oliver ◽  
Philip Glen Crandall ◽  
Nathan A. Jarvis

The detection, enumeration, and virulence potential of viable but non-culturable (VBNC) pathogens continues to be a topic of discussion. While there is a lack of definitive evidence that VBNC Listeria monocytogenes (Lm) pose a public health risk, recent studies suggest that Lm in its VBNC state remains virulent. VBNC bacteria cannot be enumerated by traditional plating methods, so the results from routine Lm testing may not demonstrate a sample’s true hazard to public health. We suggest that supplementing routine Lm testing methods with methods designed to enumerate VBNC cells may more accurately represent the true level of risk. This review summarizes five methods for enumerating VNBC Lm: Live/Dead BacLightTM staining, ethidium monoazide and propidium monoazide-stained real-time polymerase chain reaction (EMA- and PMA-PCR), direct viable count (DVC), 5-cyano-2,3-ditolyl tetrazolium chloride-4′,6-diamidino-2-phenylindole (CTC-DAPI) double staining, and carboxy-fluorescein diacetate (CDFA) staining. Of these five supplementary methods, the Live/Dead BacLightTM staining and CFDA-DVC staining currently appear to be the most accurate for VBNC Lm enumeration. In addition, the impact of the VBNC state on the virulence of Lm is reviewed. Widespread use of these supplemental methods would provide supporting data to identify the conditions under which Lm can revert from its VBNC state into an actively multiplying state and help identify the environmental triggers that can cause Lm to become virulent. Highlights: Rationale for testing for all viable Listeria (Lm) is presented. Routine environmental sampling and plating methods may miss viable Lm cells. An overview and comparison of available VBNC testing methods is given. There is a need for resuscitation techniques to recover Lm from VBNC. A review of testing results for post VBNC virulence is compared


2020 ◽  
Vol 41 (S1) ◽  
pp. s133-s133
Author(s):  
Mohammad Alrawashdeh ◽  
Chanu Rhee ◽  
Heather Hsu ◽  
Grace Lee

Background: The Hospital-Acquired Conditions Reduction Program (HACRP) and Hospital Value-Based Purchasing (HVBP) are federal value-based incentive programs that financially reward or penalize hospitals based on quality metrics. Hospital-onset C. difficile infection (HO-CDI) rates reported to the CDC NHSN became a target quality metric for both HACRP and HVBP in October 2016, but the impact of these programs on HO-CDI rates is unknown. Methods: We used an interrupted time-series design to examine the association between HACRP/HVBP implementation in October 2016 and quarterly rates of HO-CDI per 10,000 patient days among incentive-eligible acute-care hospitals conducting facility-wide HO-CDI NHSN surveillance between January 2013 and March 2019. Generalized estimating equations were used to fit negative binomial regression models to assess for immediate program impact (ie, level change) and changes in the slope of HO-CDI rates, controlling for each hospital’s predominant method for CDI testing (nucleic acid amplification including PCR (NAAT), enzyme immunoassay for toxin (EIA), or other testing method including cell cytotoxicity neutralization assay and toxigenic culture). Results: Of the 265 study hospitals studied, most were medium-sized (100–399 beds, 55%), not-for-profit (77%), teaching hospitals (70%), and were located in a metropolitan area (87%). Compared to EIA, rates of HO-CDI were higher when detected by NAAT (incidence rate ratio [IRR], 1.55; 95% CI, 1.41–1.70) or other testing methods (IRR, 1.47; 95% CI, 1.26–1.71). Controlling for CDI testing methods, HACRP/HVBP implementation was associated with an immediate 6% decline in HO-CDI rates (IRR, 0.94; 95% CI, 0.89–0.99) and a 4% decline in slope per year-quarter thereafter (IRR, 0.96; 95% CI, 0.95–0.97) (Fig. 1). Conclusions: HACRP/HVBP implementation was associated with both immediate and gradual improvements in HO-CDI rates, independent of CDI testing methods of differing sensitivity. Future research may evaluate the precise mechanisms underlying this improvement and if this impact is sustained in the long term.Funding: NoneDisclosures: None


2020 ◽  
Vol 9 (1) ◽  
pp. 1137-1146
Author(s):  
Qingli Zheng ◽  
Pengfei Dong ◽  
Zhiqiang Li ◽  
Ying Lv ◽  
Meiwen An ◽  
...  

AbstractBraided composite stent (BCS), woven with nitinol wires and polyethylene terephthalate (PET) strips, provides a hybrid design of stent. The mechanical performance of this novel stent has not been fully investigated yet. In this work, the influence of five main design factors (number of nitinol wires, braiding angle, diameter of nitinol wire, thickness and stiffness of the PET strip) on the surface coverage, radial strength, and flexibility of the BCS were systematically studied using computational models. The orthogonal experimental design was adopted to quantitatively analyze the sensitivity of multiple factors using the minimal number of study cases. Results have shown that the nitinol wire diameter and the braiding angle are two most important factors determining the mechanical performance of the BCS. A larger nitinol wire diameter led to a larger radial strength and less flexibility of the BCS. A larger braiding angle could provide a larger radial strength and better flexibility. In addition, the impact of the braiding angle decreased when the stent underwent a large deformation. At the same time, the impact of the PET strips increased due to the interaction with nitinol wires. Moreover, the number of PET strips played an important role in the surface coverage. This study could help understand the mechanical performance of BCS stent and provides guidance on the optimal design of the stent targeting less complications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anna Åkesson ◽  
Alva Curtsdotter ◽  
Anna Eklöf ◽  
Bo Ebenman ◽  
Jon Norberg ◽  
...  

AbstractEco-evolutionary dynamics are essential in shaping the biological response of communities to ongoing climate change. Here we develop a spatially explicit eco-evolutionary framework which features more detailed species interactions, integrating evolution and dispersal. We include species interactions within and between trophic levels, and additionally, we incorporate the feature that species’ interspecific competition might change due to increasing temperatures and affect the impact of climate change on ecological communities. Our modeling framework captures previously reported ecological responses to climate change, and also reveals two key results. First, interactions between trophic levels as well as temperature-dependent competition within a trophic level mitigate the negative impact of climate change on biodiversity, emphasizing the importance of understanding biotic interactions in shaping climate change impact. Second, our trait-based perspective reveals a strong positive relationship between the within-community variation in preferred temperatures and the capacity to respond to climate change. Temperature-dependent competition consistently results both in higher trait variation and more responsive communities to altered climatic conditions. Our study demonstrates the importance of species interactions in an eco-evolutionary setting, further expanding our knowledge of the interplay between ecological and evolutionary processes.


2021 ◽  
Vol 11 (10) ◽  
pp. 4602
Author(s):  
Farzin Piltan ◽  
Jong-Myon Kim

In this study, the application of an intelligent digital twin integrated with machine learning for bearing anomaly detection and crack size identification will be observed. The intelligent digital twin has two main sections: signal approximation and intelligent signal estimation. The mathematical vibration bearing signal approximation is integrated with machine learning-based signal approximation to approximate the bearing vibration signal in normal conditions. After that, the combination of the Kalman filter, high-order variable structure technique, and adaptive neural-fuzzy technique is integrated with the proposed signal approximation technique to design an intelligent digital twin. Next, the residual signals will be generated using the proposed intelligent digital twin and the original RAW signals. The machine learning approach will be integrated with the proposed intelligent digital twin for the classification of the bearing anomaly and crack sizes. The Case Western Reserve University bearing dataset is used to test the impact of the proposed scheme. Regarding the experimental results, the average accuracy for the bearing fault pattern recognition and crack size identification will be, respectively, 99.5% and 99.6%.


Sign in / Sign up

Export Citation Format

Share Document