scholarly journals Evaluation of a Coupled Model to Predict the Impact of Adaptive Behaviour in the Thermal Sensation of Occupants of Naturally Ventilated Buildings in Warm-Humid Regions

2020 ◽  
Vol 13 (1) ◽  
pp. 255
Author(s):  
Luciano C. de Faria ◽  
Marcelo A. Romero ◽  
Lúcia F. S. Pirró

Improving indoor environment quality and making urban centres in tropical regions more sustainable has become a challenge for which computational models for the prediction of thermal sensation for naturally ventilated buildings (NVBs) have major role to play. This work performed analysis on thermal sensation for non-residential NVBs located in Brazilian tropical warm-humid climate and tested the effectiveness of suggested adaptive behaviours to mitigate warm thermal sensation. The research method utilized transient computational fluid dynamics models coupled with a dynamic model for human thermophysiology to predict thermal sensation. The calculated results were validated with comparison with benchmark values from questionnaires and from field measurements. The calculated results for dynamic thermal sensation (DTS) seven-point scale showed higher agreement with the thermal sensation vote than with the predicted mean vote. The test for the suggested adaptive behaviours considered reducing clothing insulation values from 0.18 to 0.32 clo (reducing DTS from 0.1 to 0.9), increasing the air speed in 0.9 m/s (reducing DTS from 0.1 to 0.9), and applying both suggestions together (reducing DTS from 0.1 to 1.3) for five scenarios with operative temperatures spanning 34.5–24.0 °C. Results quantified the tested adaptive behaviours’ efficiency showing applicability to improve thermal sensation from slightly-warm to neutral.

2020 ◽  
Vol 12 (19) ◽  
pp. 3226
Author(s):  
Daniel Cunningham ◽  
Paul Cunningham ◽  
Matthew E. Fagan

Global tree cover products face challenges in accurately predicting tree cover across biophysical gradients, such as precipitation or agricultural cover. To generate a natural forest cover map for Costa Rica, biases in tree cover estimation in the most widely used tree cover product (the Global Forest Change product (GFC) were quantified and corrected, and the impact of map biases on estimates of forest cover and fragmentation was examined. First, a forest reference dataset was developed to examine how the difference between reference and GFC-predicted tree cover estimates varied along gradients of precipitation and elevation, and nonlinear statistical models were fit to predict the bias. Next, an agricultural land cover map was generated by classifying Landsat and ALOS PalSAR imagery (overall accuracy of 97%) to allow removing six common agricultural crops from estimates of tree cover. Finally, the GFC product was corrected through an integrated process using the nonlinear predictions of precipitation and elevation biases and the agricultural crop map as inputs. The accuracy of tree cover prediction increased by ≈29% over the original global forest change product (the R2 rose from 0.416 to 0.538). Using an optimized 89% tree cover threshold to create a forest/nonforest map, we found that fragmentation declined and core forest area and connectivity increased in the corrected forest cover map, especially in dry tropical forests, protected areas, and designated habitat corridors. By contrast, the core forest area decreased locally where agricultural fields were removed from estimates of natural tree cover. This research demonstrates a simple, transferable methodology to correct for observed biases in the Global Forest Change product. The use of uncorrected tree cover products may markedly over- or underestimate forest cover and fragmentation, especially in tropical regions with low precipitation, significant topography, and/or perennial agricultural production.


2019 ◽  
Vol 97 ◽  
pp. 04022
Author(s):  
Nikolay Trekin ◽  
Emil Kodysh ◽  
Alexander Bybka ◽  
Alexander Yamalov ◽  
Nikita Konkov

The article provides an analysis and justification of the need to take into account the compliance of discs of overlapping and coatings when calculating frames from precast concrete structures. Previously conducted full-scale experiments showed that the rigidity of the precast overlapping with full filling of the seams, in comparison with the monolithic overlapping, decreases by 3-15 times due to the ductility of the joints. The use of refined computational models of structural solutions for frames, which take into account the compliance of the conjugations of elements, makes it possible to trace possible redistribution of efforts. Such an approach when reconstructing, it is possible to optimally select and calculate the enforcement of structure, and on new designing, to increase reliability and / or improve the economic performance of frame buildings. According to the results of analytical studies, formulas were adopted for the parameters that allow one to take into account the overall compliance of overlapping disks and coatings in computational models of building frames. Numerical studies on the computational model of a frame building made it possible to evaluate the effect of accounting for compliance on the stress-strain state of a multi-storey frame.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 548
Author(s):  
Jinhu Yang ◽  
Qiang Zhang ◽  
Guoyang Lu ◽  
Xiaoyun Liu ◽  
Youheng Wang ◽  
...  

During the second half of the 20th century, eastern Northwest China experienced a warming and drying climate change. To determine whether this trend has continued or changed during the present century, this study systematically analyzes the characteristics of warming and dry–wet changes in eastern Northwest China based on the latest observational data and World Climate Research Programme (WCRP) Coupled Model Intercomparison Project Phase 6 (CMIP6) collection data. The results show that eastern Northwest China has warmed continuously during the past 60 years with a sudden temperature change occurring in the late 1990s. However, the temperature in the 2000s decreased slowly, and that in the 2010s showed a warming trend. The amount of precipitation began to increase in the late 1990s, which indicates a contemporary climate transition from warm-dry to warm-wet in eastern Northwest China. The contribution of precipitation to humidity is significantly more than that of temperature. Long-term and interannual variations dominate the temperature change, with the contribution of the former much stronger than that of the latter. However, interannual variation dominates the precipitation change. The warming accelerates from period to period, and the temperature spatial consistently increased during the three most recent climatic periods. The precipitation decreased from 1961–1990 to 1981–2010, whereas its spatial consistency increased from 1981–2010 to 1991–2019. The significant warming and humidification which began in the late 1990s and is expected to continue until the end of the 21st century in the medium emission scenario. However, the current sub-humid climate will not easily be changed. The warming could cause a climate transition from warm temperate to subtropical by 2040. The dry-to-wet climate transition in eastern Northwest China could be related to a synergistic enhancement of the East Asian summer monsoon and the westerly circulation. This research provides a scientific decision-making basis for implementing western development strategies, ecological protection, and high-quality development of the Yellow River Basin Area as well as that for ecological construction planning and water resource management of eastern Northwest China.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 212
Author(s):  
William N. Setzer ◽  
Lam Duong ◽  
Ambika Poudel ◽  
Srinivasa Rao Mentreddy

Turmeric (Curcuma longa L.) is an important spice, particularly is Asian cuisine, and is also used in traditional herbal medicine. Curcuminoids are the main bioactive agents in turmeric, but turmeric essential oils also contain health benefits. Turmeric is a tropical crop and is cultivated in warm humid environments worldwide. The southeastern United States also possesses a warm humid climate with a growing demand for locally sourced herbs and spices. In this study, five different varieties of C. longa were cultivated in north Alabama, the rhizome essential oils obtained by hydrodistillation, and the essential oils were analyzed by gas chromatographic techniques. The major components in the essential oils were α-phellandrene (3.7–11.8%), 1,8-cineole (2.6–11.7%), α-zingiberene (0.8–12.5%), β-sesquiphellandrene (0.7–8.0%), ar-turmerone (6.8–32.5%), α-turmerone (13.6–31.5%), and β-turmerone (4.8–18.4%). The essential oil yields and chemical profiles of several of the varieties are comparable with those from tropical regions, suggesting that these should be considered for cultivation and commercialization in the southeastern United States.


2020 ◽  
Vol 9 (1) ◽  
pp. 1137-1146
Author(s):  
Qingli Zheng ◽  
Pengfei Dong ◽  
Zhiqiang Li ◽  
Ying Lv ◽  
Meiwen An ◽  
...  

AbstractBraided composite stent (BCS), woven with nitinol wires and polyethylene terephthalate (PET) strips, provides a hybrid design of stent. The mechanical performance of this novel stent has not been fully investigated yet. In this work, the influence of five main design factors (number of nitinol wires, braiding angle, diameter of nitinol wire, thickness and stiffness of the PET strip) on the surface coverage, radial strength, and flexibility of the BCS were systematically studied using computational models. The orthogonal experimental design was adopted to quantitatively analyze the sensitivity of multiple factors using the minimal number of study cases. Results have shown that the nitinol wire diameter and the braiding angle are two most important factors determining the mechanical performance of the BCS. A larger nitinol wire diameter led to a larger radial strength and less flexibility of the BCS. A larger braiding angle could provide a larger radial strength and better flexibility. In addition, the impact of the braiding angle decreased when the stent underwent a large deformation. At the same time, the impact of the PET strips increased due to the interaction with nitinol wires. Moreover, the number of PET strips played an important role in the surface coverage. This study could help understand the mechanical performance of BCS stent and provides guidance on the optimal design of the stent targeting less complications.


Soil Research ◽  
2016 ◽  
Vol 54 (5) ◽  
pp. 604 ◽  
Author(s):  
G. D. Schwenke ◽  
B. M. Haigh

Summer crop production on slow-draining Vertosols in a sub-tropical climate has the potential for large emissions of soil nitrous oxide (N2O) from denitrification of applied nitrogen (N) fertiliser. While it is well established that applying N fertiliser will increase N2O emissions above background levels, previous research in temperate climates has shown that increasing N fertiliser rates can increase N2O emissions linearly, exponentially or not at all. Little such data exists for summer cropping in sub-tropical regions. In four field experiments at two locations across two summers, we assessed the impact of increasing N fertiliser rate on both soil N2O emissions and crop yield of grain sorghum (Sorghum bicolor L.) or sunflower (Helianthus annuus L.) in Vertosols of sub-tropical Australia. Rates of N fertiliser, applied as urea at sowing, included a nil application, an optimum N rate and a double-optimum rate. Daily N2O fluxes ranged from –3.8 to 2734g N2O-Nha–1day–1 and cumulative N2O emissions ranged from 96 to 6659g N2O-Nha–1 during crop growth. Emissions of N2O increased with increased N fertiliser rates at all experimental sites, but the rate of N loss was five times greater in wetter-than-average seasons than in drier conditions. For two of the four experiments, periods of intense rainfall resulted in N2O emission factors (EF, percent of applied N emitted) in the range of 1.2–3.2%. In contrast, the EFs for the two drier experiments were 0.41–0.56% with no effect of N fertiliser rate. Additional 15N mini-plots aimed to determine whether N fertiliser rate affected total N lost from the soil–plant system between sowing and harvest. Total 15N unaccounted was in the range of 28–45% of applied N and was presumed to be emitted as N2O+N2. At the drier site, the ratio of N2 (estimated by difference)to N2O (measured) lost was a constant 43%, whereas the ratio declined from 29% to 12% with increased N fertiliser rate for the wetter experiment. Choosing an N fertiliser rate aimed at optimum crop production mitigates potentially high environmental (N2O) and agronomic (N2+N2O) gaseous N losses from over-application, particularly in seasons with high intensity rainfall occurring soon after fertiliser application.


2012 ◽  
Vol 279 (1742) ◽  
pp. 3520-3526 ◽  
Author(s):  
Brian Tilston Smith ◽  
Amei Amei ◽  
John Klicka

Climatic and geological changes across time are presumed to have shaped the rich biodiversity of tropical regions. However, the impact climatic drying and subsequent tropical rainforest contraction had on speciation has been controversial because of inconsistent palaeoecological and genetic data. Despite the strong interest in examining the role of climatic change on speciation in the Neotropics there has been few comparative studies, particularly, those that include non-rainforest taxa. We used bird species that inhabit humid or dry habitats that dispersed across the Panamanian Isthmus to characterize temporal and spatial patterns of speciation across this barrier. Here, we show that these two assemblages of birds exhibit temporally different speciation time patterns that supports multiple cycles of speciation. Evidence for these cycles is further corroborated by the finding that both assemblages consist of ‘young’ and ‘old’ species, despite dry habitat species pairs being geographically more distant than pairs of humid habitat species. The matrix of humid and dry habitats in the tropics not only allows for the maintenance of high species richness, but additionally this study suggests that these environments may have promoted speciation. We conclude that differentially expanding and contracting distributions of dry and humid habitats was probably an important contributor to speciation in the tropics.


Author(s):  
T. L. Dickson ◽  
F. A. Simonen

The current regulations for pressurized thermal shock (PTS) were derived from computational models that were developed in the early-mid 1980s. The computational models utilized in the 1980s conservatively postulated that all fabrication flaws in reactor pressure vessels (RPVs) were inner-surface breaking flaws. It was recognized at that time that flaw-related data had the greatest level of uncertainty of the inputs required for the probabilistic-based PTS evaluations. To reduce this uncertainty, the United States Nuclear Regulatory Commission (USNRC) has in the past few years supported research at Pacific Northwest National Laboratory (PNNL) to perform extensive nondestructive and destructive examination of actual RPV materials. Such measurements have been used to characterize the number, size, and location of flaws in various types of welds and the base metal used to fabricate RPVs. The USNRC initiated a comprehensive project in 1999 to re-evaluate the current PTS regulations. The objective of the PTS Re-evaluation program has been to incorporate advancements and refinements in relevant technologies (associated with the physics of PTS events) that have been developed since the current regulations were derived. There have been significant improvements in the computational models for thermal hydraulics, probabilistic risk assessment (PRA), human reliability analysis (HRA), materials embrittlement effects on fracture toughness, and fracture mechanics methodology. However, the single largest advancement has been the development of a technical basis for the characterization of fabrication-induced flaws. The USNRC PTS-Revaluation program is ongoing and is expected to be completed in 2002. As part of the PTS Re-evaluation program, the updated risk-informed computational methodology as implemented into the FAVOR (Fracture Analysis of Vessels: Oak Ridge) computer code, including the improved PNNL flaw characterization, was recently applied to a domestic commercial pressurized water reactor (PWR). The objective of this paper is to apply the same updated computational methodology to the same PWR, except utilizing the 1980s flaw model, to isolate the impact of the improved PNNL flaw characterization on the PTS analysis results. For this particular PWR, the improved PNNL flaw characterization significantly reduced the frequency of RPV failure, i.e., by between one and two orders of magnitude.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
Clark A. Meyer ◽  
Eric Bertrand ◽  
Olivier Boiron ◽  
Valérie Deplano

A new experimental setup has been implemented to precisely measure the deformations of an entire model abdominal aortic aneurysm (AAA). This setup addresses a gap between the computational and experimental models of AAA that have aimed at improving the limited understanding of aneurysm development and rupture. The experimental validation of the deformations from computational approaches has been limited by a lack of consideration of the large and varied deformations that AAAs undergo in response to physiologic flow and pressure. To address the issue of experimentally validating these calculated deformations, a stereoscopic imaging system utilizing two cameras was constructed to measure model aneurysm displacement in response to pressurization. The three model shapes, consisting of a healthy aorta, an AAA with bifurcation, and an AAA without bifurcation, were also evaluated with computational solid mechanical modeling using finite elements to assess the impact of differences between material properties and for comparison against the experimental inflations. The device demonstrated adequate accuracy (surface points were located to within 0.07 mm) for capturing local variation while allowing the full length of the aneurysm sac to be observed at once. The experimental model AAA demonstrated realistic aneurysm behavior by having cyclic strains consistent with reported clinical observations between pressures 80 and 120 mm Hg. These strains are 1–2%, and the local spatial variations in experimental strain were less than predicted by the computational models. The three different models demonstrated that the asymmetric bifurcation creates displacement differences but not cyclic strain differences within the aneurysm sac. The technique and device captured regional variations of strain that are unobservable with diameter measures alone. It also allowed the calculation of local strain and removed rigid body motion effects on the strain calculation. The results of the computations show that an asymmetric aortic bifurcation created displacement differences but not cyclic strain differences within the aneurysm sac.


Sign in / Sign up

Export Citation Format

Share Document