scholarly journals Highly Valuable Polyunsaturated Fatty Acids from Microalgae: Strategies to Improve Their Yields and Their Potential Exploitation in Aquaculture

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7697
Author(s):  
Anna Santin ◽  
Monia Teresa Russo ◽  
Maria Immacolata Ferrante ◽  
Sergio Balzano ◽  
Ida Orefice ◽  
...  

Microalgae have a great potential for the production of healthy food and feed supplements. Their ability to convert carbon into high-value compounds and to be cultured in large scale without interfering with crop cultivation makes these photosynthetic microorganisms promising for the sustainable production of lipids. In particular, microalgae represent an alternative source of polyunsaturated fatty acids (PUFAs), whose consumption is related to various health benefits for humans and animals. In recent years, several strategies to improve PUFAs’ production in microalgae have been investigated. Such strategies include selecting the best performing species and strains and the optimization of culturing conditions, with special emphasis on the different cultivation systems and the effect of different abiotic factors on PUFAs’ accumulation in microalgae. Moreover, developments and results obtained through the most modern genetic and metabolic engineering techniques are described, focusing on the strategies that lead to an increased lipid production or an altered PUFAs’ profile. Additionally, we provide an overview of biotechnological applications of PUFAs derived from microalgae as safe and sustainable organisms, such as aquafeed and food ingredients, and of the main techniques (and their related issues) for PUFAs’ extraction and purification from microalgal biomass.

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 113
Author(s):  
Marine Remize ◽  
Yves Brunel ◽  
Joana L. Silva ◽  
Jean-Yves Berthon ◽  
Edith Filaire

N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.


1999 ◽  
Vol 58 (2) ◽  
pp. 377-383 ◽  
Author(s):  
J. R. Sargent ◽  
A. G. J. Tacon

The projected stagnation in the catch from global fisheries and the continuing expansion of aquaculture is considered against the background that fishmeal and fish oil are major feed stocks for farmed salmon and trout, and also for marine fish. The dietary requirement of these farmed fish for high-quality protein, rich in essential amino acids, can be met by sources other than fishmeal. However, the highly-polyunsaturated fatty acids eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) present in high concentrations in fish oil are essential dietary constituents for marine fish and highly-desirable dietary constituents for salmonids. Currently, there is no feasible alternative source to fish oil for these nutrients in fish feeds. Vegetable oils rich in linoleic acid (18:2n-6) can partially substitute for 20:5n-3 and 22:6n-3 in salmonid and marinefish feeds. However, this is nutritionally undesirable for human nutrition because the healthpromoting effects of fish-derived 20:5n-3 and 22:6n-3 reflect a very high intake of 18:2n-6 relative to linolenic acid (18:3n-3) in Western diets. If partial replacement of fish oils in fish feeds with vegetable oils becomes necessary in future, it is argued that 18:3n-3-rich oils, such as linseed oil, are the oils of choice because they are much more acceptable lrom a human nutritional perspective, especially given the innate ability of freshwater fish, including salmonids, to convert dietary 18:3n-3 to 20:5n-3 and 22:6n-3. In the meantime, a more judicious use of increasinglyexpensive fish oil in aquaculture is recommended. High priorities in the future development of aquaculture are considered to be genetic improvement of farmed fish stocks with enhanced abilities to convert C18 to C20 and C22n-3 polyunsaturated fatty acids, enhanced development of primary production of 20:5n-3 and 22:6n-3 by single-cell marine organisms, and continuing development of new species.


1998 ◽  
Vol 80 (S1) ◽  
pp. S5-S45 ◽  
Author(s):  
B. Koletzko ◽  
P. J. Aggett ◽  
J. G. Bindels ◽  
P. Bung ◽  
P. Ferré ◽  
...  

AbstractFew other aspects of food supply and metabolism are of greater biological importance than the feeding of mothers during pregnancy and lactation, and of their infants and young children. Nutritional factors during early development not only have short-term effects on growth, body composition and body functions but also exert long-term effects on health, disease and mortality risks in adulthood, as well as development of neural functions and behaviour, a phenomenon called ‘metabolic programming’. The interaction of nutrients and gene expression may form the basis of many of these programming effects and needs to be investigated in more detail. The relation between availability of food ingredients and cell and tissue differentiation and its possible uses for promoting health and development requires further exploration. The course of pregnancy, childbirth and lactation as well as human milk composition and the short- and long-term outcome of the child are influenced by the intake of foods and particularly micronutrients, e.g. polyunsaturated fatty acids, Fe, Zn and I. Folic acid supplementation from before conception through the first weeks of pregnancy can markedly reduce the occurrence of severe embryonic malformations; other potential benefits of modulating nutrient supply on maternal and child health should be further evaluated. The evaluation of dietary effects on child growth requires epidemiological and field studies as well as evaluation of specific cell and tissue growth. Novel substrates, growth factors and conditionally essential nutrients (e.g. growth factors, amino acids, polyunsaturated fatty acids) may be potentially useful as ingredients in functional foods and need to be assessed carefully. Intestinal growth, maturation, and adaptation as well as long-term function may be influenced by food ingredients such as oligosaccharides, gangliosides, high-molecular-mass glycoproteins, bile salt-activated lipase, pre- and probiotics. There are indications for some beneficial effects of functional foods on the developing immune response, for example induced by antioxidant vitamins, trace elements, fatty acids, arginine, nucleotides, and altered antigen contents in infant foods. Peak bone mass at the end of adolescence can be increased by dietary means, which is expected to be of long-term importance for the prevention of osteoporosis at older ages. Future studies should be directed to the combined effects of Ca and other constituents of growing bone, such as P, Mg and Zn, as well as vitamins D and K, and the trace elements F and B. Pregnancy and the first postnatal months are critical time periods for the growth and development of the human nervous system, processes for which adequate substrate supplies are essential. Early diet seems to have long-term effects on sensory and cognitive abilities as well as behaviour. The potential beneficial effects of a balanced supply of nutrients such as I, Fe, Zn and polyunsaturated fatty acids should be further evaluated. Possible long-term effects of early exposure to tastes and flavours on later food choice preferences may have a major impact on public health and need to be further elucidated. The use of biotechnology and recombinant techniques may offer the opportunity to include various bioactive substances in special dietary products, such as human milk proteins, peptides, growth factors, which may have beneficial physiological effects, particularly in infancy and early childhood.


2020 ◽  
Author(s):  
Rita C. Kuo ◽  
Huan Zhang ◽  
James D. Stuart ◽  
Anthony A. Provatas ◽  
Linda Hannick ◽  
...  

AbstractAlgal lipids are important fuel storage molecules in algae and a currency for energy transfer in the marine food chain as well as materials for biofuel production, but their production and regulation are not well understood in many species including the common coastal phytoplankton Eutreptiella spp. Here, using gas chromatography-tandem mass spectrometry (GC/MS/MS), we discovered 24 types of fatty acids (FAs) in Eutreptiella sp. with a relatively high proportion of long chain unsaturated FAs. The abundances of C16, C18 and saturated FAs decreased when phosphate in the culture medium was depleted. Among the 24 FAs, docosahexaenoic acid (22:6) and eicosapentaenoic acid (20:5) were the most abundant, suggesting that Eutreptiella sp. preferentially invests in the synthesis of very long chain polyunsaturated fatty acids (VLCPFA). Further transcriptomic analysis revealed that Eutreptiella sp. likely synthesizes VLCPFA via Δ8 pathway and uses type I and II fatty acid synthases. Using RT-qPCR, we found that some of the lipid production genes, such as β-ketoacyl-ACP reductase, fatty acid desaturase, acetyl-CoA carboxylase, acyl carrier protein, Δ8 desaturase, and Acyl-ACP thioesterase, were more actively expressed during light period. Besides, two carbon-fixation genes were more highly expressed in the high lipid illuminated cultures, suggesting a linkage between photosynthesis and lipid production.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1436-1438 ◽  
Author(s):  
Harbans L. Bhardwaj ◽  
Anwar A. Hamama

Information about oil and fatty acids in tepary bean (Phaseolus acutifolius A. Gray) seed, a promising alternative crop for the mid-Atlantic region of U.S., is largely unknown. Such information is needed to assess the food and feed potentials of tepary bean seed. We determined the concentrations of oil and fatty acids in seed produced by eight tepary bean genotypes planted at three different dates each during 1997 and 1998 at Ettrick, Va. Tepary bean seeds contained 1.8% oil as compared to literature values of 1.3%, 1.1%, and 1.1% for navy, kidney, and pinto beans, respectively. Tepary bean seed oil contained 33% saturated, 67% unsaturated, 24% monounsaturated, and 42% polyunsaturated fatty acids. Planting dates and genotypes did not affect oil concentration. Neb-T-14 was identified to be a desirable genotype based on a low concentration of saturated and a high concentration of polyunsaturated fatty acids. Based on concentrations of oil and fatty acids, tepary bean seeds compared well with those of navy, kidney, and pinto beans.


2019 ◽  
Vol 20 (22) ◽  
pp. 5549
Author(s):  
Yuji Ueno ◽  
Nobukazu Miyamoto ◽  
Kazuo Yamashiro ◽  
Ryota Tanaka ◽  
Nobutaka Hattori

Stroke is a major leading cause of death and disability worldwide. N-3 polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid and docosahexaenoic acid have potent anti-inflammatory effects, reduce platelet aggregation, and regress atherosclerotic plaques. Since the discovery that the Greenland Eskimo population, whose diet is high in marine n-3 PUFAs, have a lower incidence of coronary heart disease than Western populations, numerous epidemiological studies to explore the associations of dietary intakes of fish and n-3 PUFAs with cardiovascular diseases, and large-scale clinical trials to identify the benefits of treatment with n-3 PUFAs have been conducted. In most of these studies the incidence and mortality of stroke were also evaluated mainly as secondary endpoints. Thus, a systematic literature review regarding the association of dietary intake of n-3 PUFAs with stroke in the epidemiological studies and the treatment effects of n-3 PUFAs in the clinical trials was conducted. Moreover, recent experimental studies were also reviewed to explore the molecular mechanisms of the neuroprotective effects of n-3 PUFAs after stroke.


2012 ◽  
Vol 24 (6) ◽  
pp. 128-130 ◽  
Author(s):  
Eline Ryckebosch ◽  
Charlotte Bruneel ◽  
Koenraad Muylaert ◽  
Imogen Foubert

2016 ◽  
Vol 8 (4) ◽  
pp. 122 ◽  
Author(s):  
Mohammad Hossein Morowvat ◽  
Younes Ghasemi

Background and Purpose: Nowadays, polyunsaturated fatty acids (PUFAs) are playing a great role in human wellbeing and health improvement. A wide spectrum of biological, medical and health benefit effects ranging from cardiovascular, neuronal, anticancer and antioxidant have been reported from different PUFAs in human. Methodology: In this study, six different species of microalgae belonging to the chlorophyta and cyanobacteria phylum were isolated from soil and water samples collected from Persian Gulf. Their growth rate, biomass and lipid production and productivity and more importantly their ability to produce PUFAs was investigated. Results: The isolated species represented a great fatty acid profile including many different polyunsaturated fatty acids (PUFAs) ranging from 6-20 carbon atoms. S. obliquus and N. muscorum proven to have a better profile for PUFAs production, whilst C. vulgaris could be considered as a more robust strain to produce other fatty acid classes. Besides, C. vulgaris with its higher growth rates (0.39 d-1)and S. obliquus owing to its higher total lipid content (43.92%) seems more interesting strains for scale up studies. Conclusion: The obtained results demonstrated the great potential of naturally isolated strains of microalgae for PUFA production and provided some insights in next studies to explore more producing strains.


Sign in / Sign up

Export Citation Format

Share Document