scholarly journals Resveratrol and Immune Cells: A Link to Improve Human Health

Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 424
Author(s):  
Alessio Alesci ◽  
Noemi Nicosia ◽  
Angelo Fumia ◽  
Federica Giorgianni ◽  
Antonello Santini ◽  
...  

The use of polyphenols as adjuvants in lowering risk factors for various debilitating diseases has been investigated in recent years due to their possible antioxidant action. Polyphenols represent a fascinating and relatively new subject of research in nutraceuticals and nutrition, with interest rapidly expanding since they can help maintain health by controlling metabolism, weight, chronic diseases, and cell proliferation. Resveratrol is a phenolic compound found mostly in the pulp, peels, seeds, and stems of red grapes. It has a wide variety of biological actions that can be used to prevent the beginning of various diseases or manage their symptoms. Resveratrol can influence multiple inflammatory and non-inflammatory responses, protecting organs and tissues, thanks to its interaction with immune cells and its activity on SIRT1. This compound has anti-inflammatory, antioxidant, anti-apoptotic, neuroprotective, cardioprotective, anticancer, and antiviral properties, making it a potential adjunct to traditional pharmaceutical therapy in public health. This review aims to provide a comprehensive analysis of resveratrol in terms of active biological effects and mechanism of action in modifying the immune cellular response to promote human psychophysical health.

2021 ◽  
Vol 91 ◽  
pp. 107318
Author(s):  
Shuling Zhang ◽  
Jianzhu Zhao ◽  
Xueli Bai ◽  
Mike Handley ◽  
Fengping Shan

1996 ◽  
Vol 318 (2) ◽  
pp. 489-495 ◽  
Author(s):  
Julia KAROW ◽  
Keith R. HUDSON ◽  
Mark A. HALL ◽  
Ann B. VERNALLIS ◽  
Jacky A. TAYLOR ◽  
...  

Interleukin-11 (IL-11) is a polyfunctional cytokine whose biological actions require a specific IL-11 receptor (IL-11R) and the transmembrane transducer gp130. Here we report the production of a soluble form of the murine IL-11R and demonstrate that it interacts with IL-11 ligand with high affinity. The affinity of IL-11 alone for gp130 is below the level of detection, but a complex of IL-11 and soluble IL-11R interacts with gp130 with high affinity. The addition of soluble IL-11R potentiates the effects of exogenous IL-11 in cells that are normally responsive to IL-11. A biological response to IL-11 can be reconstituted in BAF cells transfected with gp130 by addition of IL-11 and soluble IL-11R. These findings show that the cytoplasmic domain of the IL-11R is not required for the biological effects of IL-11 and that a complex of IL-11 and IL-11R mediates signalling by association with gp130.


2018 ◽  
Vol 11 (558) ◽  
pp. eaat7493 ◽  
Author(s):  
Anu Chaudhary ◽  
Cassandra Kamischke ◽  
Mara Leite ◽  
Melissa A. Altura ◽  
Loren Kinman ◽  
...  

The outer membranes of Gram-negative bacteria and mitochondria contain proteins with a distinct β-barrel tertiary structure that could function as a molecular pattern recognized by the innate immune system. Here, we report that purified outer membrane proteins (OMPs) from different bacterial and mitochondrial sources triggered the induction of autophagy-related endosomal acidification, LC3B lipidation, and p62 degradation. Furthermore, OMPs reduced the phosphorylation and therefore activation of the multiprotein complex mTORC2 and its substrate Akt in macrophages and epithelial cells. The cell surface receptor SlamF8 and the DNA-protein kinase subunit XRCC6 were required for these OMP-specific responses in macrophages and epithelial cells, respectively. The addition of OMPs to mouse bone marrow–derived macrophages infected withSalmonellaTyphimurium facilitated bacterial clearance. These data identify a specific cellular response mediated by bacterial and mitochondrial OMPs that can alter inflammatory responses and influence the killing of pathogens.


2017 ◽  
Vol 17 (18) ◽  
pp. 11423-11440 ◽  
Author(s):  
Wing Y. Tuet ◽  
Yunle Chen ◽  
Shierly Fok ◽  
Julie A. Champion ◽  
Nga L. Ng

Abstract. Cardiopulmonary health implications resulting from exposure to secondary organic aerosols (SOA), which comprise a significant fraction of ambient particulate matter (PM), have received increasing interest in recent years. In this study, alveolar macrophages were exposed to SOA generated from the photooxidation of biogenic and anthropogenic precursors (isoprene, α-pinene, β-caryophyllene, pentadecane, m-xylene, and naphthalene) under different formation conditions (RO2 + HO2 vs. RO2 + NO dominant, dry vs. humid). Various cellular responses were measured, including reactive oxygen and nitrogen species (ROS/RNS) production and secreted levels of cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). SOA precursor identity and formation condition affected all measured responses in a hydrocarbon-specific manner. With the exception of naphthalene SOA, cellular responses followed a trend where TNF-α levels reached a plateau with increasing IL-6 levels. ROS/RNS levels were consistent with relative levels of TNF-α and IL-6, due to their respective inflammatory and anti-inflammatory effects. Exposure to naphthalene SOA, whose aromatic-ring-containing products may trigger different cellular pathways, induced higher levels of TNF-α and ROS/RNS than suggested by the trend. Distinct cellular response patterns were identified for hydrocarbons whose photooxidation products shared similar chemical functionalities and structures, which suggests that the chemical structure (carbon chain length and functionalities) of photooxidation products may be important for determining cellular effects. A positive nonlinear correlation was also detected between ROS/RNS levels and previously measured DTT (dithiothreitol) activities for SOA samples. In the context of ambient samples collected during summer and winter in the greater Atlanta area, all laboratory-generated SOA produced similar or higher levels of ROS/RNS and DTT activities. These results suggest that the health effects of SOA are important considerations for understanding the health implications of ambient aerosols.


Author(s):  
Katarzyna Hackert ◽  
Susanne Homann ◽  
Shakila Mir ◽  
Arne Beran ◽  
Simone Gorreßen ◽  
...  

Cardiac wall stress induces local and systemic inflammatory responses that are increasingly recognized as key modulators of extracellular matrix remodeling. Hyaluronic acid interacts with immune cells and mesenchymal cells thereby modulating profibrotic signals. Here we tested the hypothesis that 4-methylumbelliferone (4-MU), an inhibitor of hyaluronic acid synthesis, would attenuate inflammation and extracellular matrix remodeling of pressure-overloaded myocardium in C57BL/6J male mice fed with 4-MU and subjected to TAC (transverse aortic constriction) surgery. Flow cytometry of immune cells showed TAC-induced leukocytosis due to an increase of neutrophils and monocytes. 4-MU strongly attenuated both circulating and cardiac leukocyte numbers 3 days after TAC. In the hearts, 4-MU reduced the number of CCR2 − resident macrophages. At later time points, 4-MU also prevented the infiltration of heart tissue by bone marrow-derived circulating monocytes leading to reduced cardiac macrophage counts even 7 weeks after TAC. The long-term attenuation of macrophage-driven inflammation was associated with less myocardial fibrosis in 4-MU-treated compared with untreated mice. Unexpectedly, 4-MU also reduced the development of left ventricular hypertrophy and increased cardiac output after TAC without affecting blood pressure. The data demonstrate that 4-MU reduces both resident and invading cardiac macrophages and may be a promising agent to alleviate pressure-overload induced myocardial damage.


2021 ◽  
Vol 100 (9) ◽  
pp. 929-932
Author(s):  
Anna M. Egorova ◽  
Lydiya A. Lutsenko ◽  
Anna V. Sukhova ◽  
Vyacheslav V. Kolyuka ◽  
Rustam V. Turdyev

The program “Digital Economy of the Russian Federation” approved the Concept for the creation and development of 5G / IMT-2020 networks. The development of 5G communications will significantly impact the implementation of many innovative projects and initiatives: the Smart City project, Unmanned Transport, etc. Along with significant technical advantages compared to previous generations of communication (2G, 3G, 4G), 5G technology has completely different emitting characteristics: more emitting elements, signal modulation, three-dimensional beam, the ability to control the beam, SHF (ultra-high) and EHF (extremely high) radio frequency ranges and centimetre and millimetre wavelengths of electromagnetic radiation. Therefore, it is becoming an especially urgent problem to ensure exposure to the human body of non-ionizing electromagnetic fields of the radio frequency range (30 kHz-300 GHz). The authors searched the literature on the biological effects of 5G cellular communications and electromagnetic radiation in the centimetre and millimetre ranges using the appropriate keywords in PubMed search engines, Scopus, Web of Science, Medline, The Cochrane Library, EMBASE, Global Health, CyberLeninka, RSCI and others. There is currently tentative and conflicting evidence on the impact of 5G. The rapidly growing density of wireless devices and antennas (considering future 5G networks) increases the public health risk from exposure to RF EMFs as the penetration depth for 5G EHF radiation is only a few millimetres. At these wavelengths, resonance phenomena are possible at the cellular and molecular levels, particularly concerning stimulating SHF and EHF oxidative processes and damaging DNA. The influence of the millimetre range of RF-EMF is poorly understood; oncological and non-oncological (impact on the reproductive, immune systems, etc.) effects are possible. Using numerical simulation methods of EMF radiation resonances on insects, Thielens A et al., 2018, found a significant overall increase in the absorbed RF power at a frequency of 6 GHz and higher than a frequency below 6 GHz.


2021 ◽  
Vol 12 ◽  
Author(s):  
Huihui Li ◽  
Chen Chen ◽  
Dao Wen Wang

Despite mounting evidence demonstrating the significance of inflammation in the pathophysiological mechanisms of heart failure (HF), most large clinical trials that target the inflammatory responses in HF yielded neutral or even worsening outcomes. Further in-depth understanding about the roles of inflammation in the pathogenesis of HF is eagerly needed. This review summarizes cytokines, cardiac infiltrating immune cells, and extracardiac organs that orchestrate the complex inflammatory responses in HF and highlights emerging therapeutic targets.


Author(s):  
Zuzana Bárdyová ◽  
Martina Horváthová ◽  
Katarína Pinčáková ◽  
Darina Budošová

The ionizing radiation belongs to the basic physical factors that can be measured. We forget often about its risks and the possible damage to our health. The imaging methods which use the ionizing radiation increase the diagnostics quality and they have become a certainty for many medical workers. Therefore, they are being used without rational thinking many times. With this is related to increasing the cumulative dose of patients. Next problem can be radiation safety knowledge of medical workers. The enormous increase in the use of sources ionizing radiation in medicine and rapid development, there may be a disproportionate acquisition of radiation safety knowledge of healthcare workers. At the same time, constant attention must be paid to the biological effects of radiation and realize epidemiology studies. In all the areas mentioned the public health has space. However, it is sad that presently, the radiation safety is not considered important enough in Public Health.  Based on many sources, it is safe to say that this is a major problem, because the public health itself can play an important role in radiation safety. It is important to point out, that safety and effectivity of using the source of ionizing radiation is one of the main components of Good Medical Practice.


Sign in / Sign up

Export Citation Format

Share Document