scholarly journals Continuous-Wave Laser-Induced Transfer of Metal Nanoparticles to Arbitrary Polymer Substrates

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 701 ◽  
Author(s):  
Jaemook Lim ◽  
Youngchan Kim ◽  
Jaeho Shin ◽  
Younggeun Lee ◽  
Wooseop Shin ◽  
...  

Laser-induced forward transfer (LIFT) and selective laser sintering (SLS) are two distinct laser processes that can be applied to metal nanoparticle (NP) ink for the fabrication of a conductive layer on various substrates. A pulsed laser and a continuous-wave (CW) laser are utilized respectively in the conventional LIFT and SLS processes; however, in this study, CW laser-induced transfer of the metal NP is proposed to achieve simultaneous sintering and transfer of the metal NP to a wide range of polymer substrates. At the optimum laser parameters, it was shown that a high-quality uniform metal conductor was created on the acceptor substrate while the metal NP was sharply detached from the donor substrate, and we anticipate that such an asymmetric transfer phenomenon is related to the difference in the adhesion strengths. The resultant metal electrode exhibits a low resistivity that is comparable to its bulk counterpart, together with strong adhesion to the target polymer substrate. The versatility of the proposed process in terms of the target substrate and applicable metal NPs brightens its prospects as a facile manufacturing scheme for flexible electronics.

2009 ◽  
Vol 1196 ◽  
Author(s):  
Seung Hwan Ko ◽  
Heng Pan ◽  
Nico Hotz ◽  
Costas P. Grigoropoulos

AbstractThe development of electric circuit fabrication on heat and chemically sensitive polymer substrates has attracted significant interest as a pathway to low-cost or large-area electronics. We demonstrated the large area, direct patterning of microelectronic structures by selective laser sintering of nanoparticles without using any conventional, very expensive vacuum or photoresist deposition steps. Surface monolayer protected gold nanoparticles suspended in organic solvent was spin coated on a glass or polymer substrate. Then low power continuous wave Ar-ion laser was irradiated as a local heat source to induce selective laser sintering of nanoparticles by a scanning mirror system. Metal nanoparticle possessed low melting temperature (<150°C) due to thermodynamic size effect, and high laser absorption due to surface plasmon mode. These make metal nanoparticles ideal for the low temperature, low laser energy selective laser processing, and further applicable for electronics fabrication on a heat sensitive polymer substrate. We extended our laser selective sintering of nanoparticles research to a large area (> 4” wafer) using scanning mirror to demonstrate current technology for industry level fabrication.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2511 ◽  
Author(s):  
Wooseop Shin ◽  
Jaemook Lim ◽  
Younggeun Lee ◽  
Sewoong Park ◽  
Hyeonseok Kim ◽  
...  

Selective laser sintering of metal nanoparticle ink is an attractive technology for the creation of metal layers at the microscale without any vacuum deposition process, yet its application to elastomer substrates has remained a highly challenging task. To address this issue, we introduced the shear-assisted laser transfer of metal nanoparticle ink by utilizing the difference in thermal expansion coefficients between the elastomer and the target metal electrode. The laser was focused and scanned across the absorbing metal nanoparticle ink layer that was in conformal contact with the elastomer with a high thermal expansion coefficient. The resultant shear stress at the interface assists the selective transfer of the sintered metal nanoparticle layer. We expect that the proposed method can be a competent fabrication route for a transparent conductor on elastomer substrates.


2010 ◽  
Vol 93-94 ◽  
pp. 5-8 ◽  
Author(s):  
Iryna Yakimets ◽  
Duncan MacKerron ◽  
Peter Giesen ◽  
Keith J. Kilmartin ◽  
Marloes Goorhuis ◽  
...  

Flexible electronics technology can potentially result in many compelling applications not satisfied by the rigid Si-based conventional electronics. Commercially available foils such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) have emerged as the most suitable polymer materials for wide range of flexible electronics applications. Despite the enormous progress which has been recently done on the optimization of physical and mechanical properties of PET and PEN foils, their dimensional stability at the micro-scale is still an issue during patterning of wiring by means of lithography. Consequently, the measurement of in-plane micro-deformation of foil is of great importance for understanding and predicting its thermal, hydroscopic and mechanical behaviour during processing.


Friction ◽  
2021 ◽  
Author(s):  
Xiaosong Li ◽  
Pengpeng Bai ◽  
Xinxin Li ◽  
Lvzhou Li ◽  
Yuanzhe Li ◽  
...  

AbstractBio-inspired reversible adhesion has significant potential in many fields requiring flexible grasping and manipulation, such as precision manufacturing, flexible electronics, and intelligent robotics. Despite extensive efforts for adhesive synthesis with a high adhesion strength at the interface, an effective strategy to actively tune the adhesion capacity between a strong attachment and an easy detachment spanning a wide range of scales has been lagged. Herein, we report a novel soft-hard-soft sandwiched composite design to achieve a stable, repeatable, and reversible strong adhesion with an easily scalable performance for a large area ranging from ∼1.5 to 150 cm2 and a high load ranging from ∼20 to 700 N. Theoretical studies indicate that this design can enhance the uniform loading for attachment by restraining the lateral shrinkage in the natural state, while facilitate a flexible peeling for detachment by causing stress concentration in the bending state, yielding an adhesion switching ratio of ∼54 and a switching time of less than ∼0.2 s. This design is further integrated into versatile grippers, climbing robots, and human climbing grippers, demonstrating its robust scalability for a reversible strong adhesion. This biomimetic design bridges microscopic interfacial interactions with macroscopic controllable applications, providing a universal and feasible paradigm for adhesion design and control.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2511
Author(s):  
Li Xu ◽  
Wei-Chia Weng ◽  
Ying-Chin Yeh

In this paper we present the laser nanowelding process of silver nanowires (AgNWs) deposited on flexible polymer substrates by continuous wave (CW) lasers. CW lasers are cost-effective and can provide moderate power density, somewhere between nanosecond pulsed lasers and flash lamps, which is just enough to perform the nanowelding process efficiently and does not damage the nanowires or the polymer substrates. Here, an Nd:YAG CW laser (wavelength 532 nm) was used to perform the nanowelding of AgNWs on polyethylene terephthalate (PET) substrates. Key process parameters such as laser power, scan speed, and number of scans were studied and optimized, and mechanisms of observed phenomena are discussed. Our best result demonstrates a sheet resistance of 12 ohm/squ with a transmittance at λ = 550 nm of 92% for AgNW films on PET substrates. A transparent resistive heater was made, and IR pictures were taken to show the high uniformity of the CW laser nanowelded AgNW film. Our findings show that highly effective and efficient nanowelding can be achieved without the need of expensive pulse lasers or light sources, which may contribute to lower the cost of mass producing AgNWs on flexible substrates.


2021 ◽  
Vol 894 ◽  
pp. 51-57
Author(s):  
Zhen Di Yang ◽  
Chris Goode

Electroplating on polymer substrates, which provides polymers with enhanced mechanical properties, extended component lifetimes, and offers a decorative appearance, is environmentally unsustainable. Laser machining, a green process developed at Cirrus Materials Science Ltd, generates an array of pores on various polymer surfaces, which replaces the chemical etch process, and provides strong adhesion for metal coatings to polymer substrates. Laser machining is also applicable to a wide range of engineered or industrial polymer substrates and is adaptable to complex shapes and 3D printed parts. This paper discussed the process of laser machining of polymer substrates including the properties of metal layers on such machined surfaces; and demonstrated laser machining as a promising substitute for conventional chemical etching to prepare various engineering polymer substrates for adhesive coatings.


2019 ◽  
Vol 50 (4) ◽  
pp. 693-702 ◽  
Author(s):  
Christine Holyfield ◽  
Sydney Brooks ◽  
Allison Schluterman

Purpose Augmentative and alternative communication (AAC) is an intervention approach that can promote communication and language in children with multiple disabilities who are beginning communicators. While a wide range of AAC technologies are available, little is known about the comparative effects of specific technology options. Given that engagement can be low for beginning communicators with multiple disabilities, the current study provides initial information about the comparative effects of 2 AAC technology options—high-tech visual scene displays (VSDs) and low-tech isolated picture symbols—on engagement. Method Three elementary-age beginning communicators with multiple disabilities participated. The study used a single-subject, alternating treatment design with each technology serving as a condition. Participants interacted with their school speech-language pathologists using each of the 2 technologies across 5 sessions in a block randomized order. Results According to visual analysis and nonoverlap of all pairs calculations, all 3 participants demonstrated more engagement with the high-tech VSDs than the low-tech isolated picture symbols as measured by their seconds of gaze toward each technology option. Despite the difference in engagement observed, there was no clear difference across the 2 conditions in engagement toward the communication partner or use of the AAC. Conclusions Clinicians can consider measuring engagement when evaluating AAC technology options for children with multiple disabilities and should consider evaluating high-tech VSDs as 1 technology option for them. Future research must explore the extent to which differences in engagement to particular AAC technologies result in differences in communication and language learning over time as might be expected.


2020 ◽  
Vol 7 (2) ◽  
pp. 34-41
Author(s):  
VLADIMIR NIKONOV ◽  
◽  
ANTON ZOBOV ◽  

The construction and selection of a suitable bijective function, that is, substitution, is now becoming an important applied task, particularly for building block encryption systems. Many articles have suggested using different approaches to determining the quality of substitution, but most of them are highly computationally complex. The solution of this problem will significantly expand the range of methods for constructing and analyzing scheme in information protection systems. The purpose of research is to find easily measurable characteristics of substitutions, allowing to evaluate their quality, and also measures of the proximity of a particular substitutions to a random one, or its distance from it. For this purpose, several characteristics were proposed in this work: difference and polynomial, and their mathematical expectation was found, as well as variance for the difference characteristic. This allows us to make a conclusion about its quality by comparing the result of calculating the characteristic for a particular substitution with the calculated mathematical expectation. From a computational point of view, the thesises of the article are of exceptional interest due to the simplicity of the algorithm for quantifying the quality of bijective function substitutions. By its nature, the operation of calculating the difference characteristic carries out a simple summation of integer terms in a fixed and small range. Such an operation, both in the modern and in the prospective element base, is embedded in the logic of a wide range of functional elements, especially when implementing computational actions in the optical range, or on other carriers related to the field of nanotechnology.


2019 ◽  
Author(s):  
Le Wang ◽  
Devon Jakob ◽  
Haomin Wang ◽  
Alexis Apostolos ◽  
Marcos M. Pires ◽  
...  

<div>Infrared chemical microscopy through mechanical probing of light-matter interactions by atomic force microscopy (AFM) bypasses the diffraction limit. One increasingly popular technique is photo-induced force microscopy (PiFM), which utilizes the mechanical heterodyne signal detection between cantilever mechanical resonant oscillations and the photo induced force from light-matter interaction. So far, photo induced force microscopy has been operated in only one heterodyne configuration. In this article, we generalize heterodyne configurations of photoinduced force microscopy by introducing two new schemes: harmonic heterodyne detection and sequential heterodyne detection. In harmonic heterodyne detection, the laser repetition rate matches integer fractions of the difference between the two mechanical resonant modes of the AFM cantilever. The high harmonic of the beating from the photothermal expansion mixes with the AFM cantilever oscillation to provide PiFM signal. In sequential heterodyne detection, the combination of the repetition rate of laser pulses and polarization modulation frequency matches the difference between two AFM mechanical modes, leading to detectable PiFM signals. These two generalized heterodyne configurations for photo induced force microscopy deliver new avenues for chemical imaging and broadband spectroscopy at ~10 nm spatial resolution. They are suitable for a wide range of heterogeneous materials across various disciplines: from structured polymer film, polaritonic boron nitride materials, to isolated bacterial peptidoglycan cell walls. The generalized heterodyne configurations introduce flexibility for the implementation of PiFM and related tapping mode AFM-IR, and provide possibilities for additional modulation channel in PiFM for targeted signal extraction with nanoscale spatial resolution.</div>


Author(s):  
L.S. Koh ◽  
H. Marks ◽  
L.K. Ross ◽  
C.M. Chua ◽  
J.C.H. Phang

Abstract A Laser Timing Probe (LTP) system which uses a noninvasive 1.3 µm continuous wave (CW) laser with frequency mapping and single point measurement capabilities is described. The frequency mapping modes facilitate the localization of signal maxima for subsequent single point measurements. Measurements of waveforms with long delays and 50 ps response time from NMOS and PMOS transistors are also shown.


Sign in / Sign up

Export Citation Format

Share Document