scholarly journals Strong Dipole–Quadrupole–Exciton Coupling Realized in a Gold Nanorod Dimer Placed on a Two-Dimensional Material

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1619
Author(s):  
Huajian Pang ◽  
Hongxin Huang ◽  
Lidan Zhou ◽  
Yuheng Mao ◽  
Fu Deng ◽  
...  

Simple systems in which strong coupling of different excitations can be easily realized are highly important, not only for fundamental research but also for practical applications. Here, we proposed a T-shaped gold nanorod (GNR) dimer composed of a long GNR and a short GNR perpendicular to each other and revealed that the dark quadrupole mode of the long GNR can be activated by utilizing the dipole mode excited in the short GNR. It was found that the strong coupling between the dipole and quadrupole modes can be achieved by exciting the T-shaped GNR dimer with a plane wave. Then, we demonstrated the realization of strong dipole–quadrupole–exciton coupling by placing a T-shaped GNR on a tungsten disulfide (WS2) monolayer, which leads to a Rabi splitting as large as ~299 meV. It was confirmed that the simulation results can be well fitted by using a Hamiltonian based on the coupled harmonic oscillator model and the coupling strengths for dipole–quadrupole, dipole–exciton and quadrupole–exciton can be extracted from the fitting results. Our findings open new horizons for realizing strong plasmon–exciton coupling in simple systems and pave the way for constructing novel plasmonic devices for practical applications.

2021 ◽  
Vol 22 (11) ◽  
pp. 5912
Author(s):  
Patricia Alvarez-Sieiro ◽  
Hendrik R. Sikkema ◽  
Bert Poolman

Many proteins have a multimeric structure and are composed of two or more identical subunits. While this can be advantageous for the host organism, it can be a challenge when targeting specific residues in biochemical analyses. In vitro splitting and re-dimerization to circumvent this problem is a tedious process that requires stable proteins. We present an in vivo approach to transform homodimeric proteins into apparent heterodimers, which then can be purified using two-step affinity-tag purification. This opens the door to both practical applications such as smFRET to probe the conformational dynamics of homooligomeric proteins and fundamental research into the mechanism of protein multimerization, which is largely unexplored for membrane proteins. We show that expression conditions are key for the formation of heterodimers and that the order of the differential purification and reconstitution of the protein into nanodiscs is important for a functional ABC-transporter complex.


2020 ◽  
Vol 238 ◽  
pp. 05004
Author(s):  
Gabriel W. Castellanos ◽  
Shunsuke Murai ◽  
T.V. Raziman ◽  
Shaojun Wang ◽  
Mohammad Ramezani ◽  
...  

We demonstrate the strong coupling between excitons in organic molecules and all-dielectric metasurfaces formed by arrays of silicon nanoparticles supporting Mie surface lattice resonances (MSLRs). Compared to Mie resonances in individual nanoparticles, MSLRs have extended mode volumes and much larger quality factors, which enables to achieve collective strong coupling with very large coupling strengths and Rabi energies. Moreover, due to the electric and magnetic character of the MSLR given by the Mie resonance, we show that the hybridization of the exciton with the MSLR results in exciton-polaritons that inherit this character as well. Our results demonstrate the potential of all-dielectric metasurfaces as novel platform to investigate and manipulate exciton-polaritons in low-loss polaritonic devices.


2019 ◽  
Vol 9 (16) ◽  
pp. 3297 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Li

As the fundamental and promising branch of nanophotonics, surface plasmon polaritons (SPP) with the ability of manipulating the electromagnetic field on the subwavelength scale are of interest to a wide spectrum of scientists. Composed of metallic or dielectric structures whose shape and position are carefully engineered on the metal surface, traditional SPP devices are generally static and lack tunability. Dynamical manipulation of SPP is meaningful in both fundamental research and practical applications. In this article, the achievements in dynamical SPP excitation, SPP focusing, SPP vortex, and SPP nondiffracting beams are presented. The mechanisms of dynamical SPP devices are revealed and compared, and future perspectives are discussed.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Borui Xu ◽  
Xinyuan Zhang ◽  
Ziao Tian ◽  
Di Han ◽  
Xingce Fan ◽  
...  

Abstract Three-dimensional microstructures fabricated by origami, including folding, rolling and buckling, gain great interests in mechanics, optics and electronics. We propose a general strategy on on-demand and spontaneous rolling origami for artificial microstructures aiming at massive and intelligent production. Deposited nanomembranes are rolled-up in great amount triggered by the intercalation of tiny droplet, taking advantage of a creative design of van der Waals interaction with substrate. The rolling of nanomembranes delaminated by liquid permits a wide choice in materials as well as precise manipulation in rolling direction by controlling the motion of microdroplet, resulting in intelligent construction of rolling microstructures with designable geometries. Moreover, this liquid-triggered delamination phenomenon and constructed microstructures are demonstrated in the applications among vapor sensing, microresonators, micromotors, and microactuators. This investigation offers a simple, massive, low-cost, versatile and designable construction of rolling microstructures for fundamental research and practical applications.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1756
Author(s):  
Shinpei Ogawa ◽  
Masafumi Kimata

Plasmonics and metamaterials are growing fields that consistently produce new technologies for controlling electromagnetic waves. Many important advances in both fundamental knowledge and practical applications have been achieved in conjunction with a wide range of materials, structures and wavelengths, from the ultraviolet to the microwave regions of the spectrum. In addition to this remarkable progress across many different fields, much of this research shares many of the same underlying principles, and so significant synergy is expected. This Special Issue introduces the recent advances in plasmonics and metamaterials and discusses various applications, while addressing a wide range of topics in order to explore the new horizons emerging for such research.


2016 ◽  
Vol 18 (13) ◽  
pp. 9079-9087 ◽  
Author(s):  
Matthew R. Ryder ◽  
Bartolomeo Civalleri ◽  
Jin-Chong Tan

Understanding the mechanical properties of MOFs is crucial not only to yield robust practical applications, but also to advance fundamental research underpinning flexibility of a myriad of open-framework compounds.


Author(s):  
Changsong Ding ◽  
Carl D. Meinhart ◽  
Noel C. MacDonald

Wicking materials with tunable wettability are of great importance for both fundamental research and practical applications such as heat pipes. In this work, we adopt recently developed titanium bulk micromachining[1] techniques to fabricate pillar arrays. Then we modify the micromachined pillars to form micro- & nano-textured (bitextured) titania structures (BTS). Further, we investigated how to plate gold on the modified surfaces to tune the wettability. A wicking material for heat pipe requires super wetting by common fluids such as water. We show theoretical studies and experimental work to investigate the wetting behavior of two different designs/samples. For heat pipe applications the BTS and plating gold not only increases the capillary pressure which enhances liquid pumping from condenser to evaporator, but also increases the heat transfer performance by extended surface and smaller pore sizes[2]. Testing results show that water can completely wet the micromachined Ti pillars (Design A: 5μm in diameter/5μm gap). The BTS helps increase the wetting speed by over 100% for this design. A second design with much larger diameter and gap (Design B: 100μm in diameter/50μm in gap) is also tested to compare with design A for wetting speed. Results show that Design B gives a wetting speed twice of Design A. Plating method is used to decrease pillar gap (from 50μm to 5μm) by growing gold on surfaces. This will help increase thermal conductivity of wicking material which is preferred for the evaporator and condenser regions of heat pipes. Wetting experiment is done on Sample B after plating with gold. Wetting results after Au plating show that wetting velocity decreases but is still significantly large.


Nano Express ◽  
2021 ◽  
Author(s):  
Bala Ismail Adamu ◽  
Peipei Chen ◽  
Weiguo Chu

Abstract Nanostructuring, including tailoring dimensionality, size and morphology, and nanopatterning, is well recognized to play an increasingly important role in sensing units/chips of electrical gas sensors. As two predominant and fundamental configurations, chemiresistor- and field emission transistor (FET)-based electrical gas sensors are receiving increasing attention for fundamental research and practical applications. Herein, state-of-the-art overviews of electrical gas sensors are presented with emphasis on the role of nanostructuring in sensing units for both chemiresistors and FETs types, the strategies for their performance enhancement, and some key sensing mechanisms involved. Nanostructuring of sensing units and their dependence of the performance of chemiresistor- and FET-based gas sensors are discussed according to zero- (0D), one-(1D), two- (2D), and three-dimension (3D), respectively. Other types of gas sensors are also mentioned briefly. Some particular strategies such as loading external heat and light sources, electrical field, and mechanical forces for providing extra freedom to improve and optimize the performance are introduced in detail. Finally, a summary and future perspectives about gas sensors are given with some novel strategies, ideas, and solutions that could make it possible to meet the requirements of rapid industrialization, informatization, intelligentization, and population expansion.


2021 ◽  
Vol 21 (3) ◽  
pp. 3-23
Author(s):  
Gloria Hristova

Abstract Text analytics is becoming an integral part of modern business and economic research and analysis. However, the extent to which its application is possible and accessible varies for different languages. The main goal of this paper is to outline fundamental research on text analytics applied on data in Bulgarian. A review of key research articles in two main directions is provided – development of language resources for Bulgarian and experimenting with Bulgarian text data in practical applications. By summarizing the results of a large literature review, we draw conclusions about the degree of development of the field, the availability of language resources for the Bulgarian language and the extent to which text analytics has been applied in practical problems. Future directions for research are outlined. To the best of the author’s knowledge, this is the first study providing a comprehensive overview of progress in the field of text analytics in Bulgarian.


2020 ◽  
Vol 6 (21) ◽  
pp. eaba4098 ◽  
Author(s):  
Dongliang Chao ◽  
Wanhai Zhou ◽  
Fangxi Xie ◽  
Chao Ye ◽  
Huan Li ◽  
...  

Safety concerns about organic media-based batteries are the key public arguments against their widespread usage. Aqueous batteries (ABs), based on water which is environmentally benign, provide a promising alternative for safe, cost-effective, and scalable energy storage, with high power density and tolerance against mishandling. Research interests and achievements in ABs have surged globally in the past 5 years. However, their large-scale application is plagued by the limited output voltage and inadequate energy density. We present the challenges in AB fundamental research, focusing on the design of advanced materials and practical applications of whole devices. Potential interactions of the challenges in different AB systems are established. A critical appraisal of recent advances in ABs is presented for addressing the key issues, with special emphasis on the connection between advanced materials and emerging electrochemistry. Last, we provide a roadmap starting with material design and ending with the commercialization of next-generation reliable ABs.


Sign in / Sign up

Export Citation Format

Share Document