scholarly journals Tip-Viscid Electrohydrodynamic Jet 3D Printing of Composite Osteochondral Scaffold

Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2694
Author(s):  
Kai Li ◽  
Dazhi Wang ◽  
Fangyuan Zhang ◽  
Xiaoying Wang ◽  
Hairong Chen ◽  
...  

A novel method called tip-viscid electrohydrodynamic jet printing (TVEJ), which produces a viscous needle tip jet, was presented to fabricate a 3D composite osteochondral scaffold with controllability of fiber size and space to promote cartilage regeneration. The tip-viscid process, by harnessing the combined effects of thermal, flow, and electric fields, was first systematically investigated by simulation analysis. The influences of process parameters on printing modes and resolutions were investigated to quantitatively guide the fabrication of various structures. 3D architectures with high aspect ratio and good interlaminar bonding were printed, thanks to the stable fine jet and its predictable viscosity. 3D composite osteochondral scaffolds with controllability of architectural features were fabricated, facilitating ingrowth of cells, and eventually inducing homogeneous cell proliferation. The scaffold’s properties, which included chemical composition, wettability, and durability, were also investigated. Feasibility of the 3D scaffold for cartilage tissue regeneration was also proven by in vitro cellular activities.

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1918
Author(s):  
Young-Bum Son ◽  
Yeon Ik Jeong ◽  
Yeon Woo Jeong ◽  
Mohammad Shamim Hossein ◽  
Per Olof Olsson ◽  
...  

Mesenchymal stem cells (MSCs) are promising multipotent cells with applications for cartilage tissue regeneration in stem cell-based therapies. In cartilage regeneration, both bone marrow (BM-MSCs) and synovial fluid (SF-MSCs) are valuable sources. However, the cellular characteristics and chondrocyte differentiation potential were not reported in either of the camel stem cells. The in vitro chondrocyte differentiation competence of MSCs, from (BM and SF) sources of the same Camelus dromedaries (camel) donor, was determined. Both MSCs were evaluated on pluripotent markers and proliferation capacity. After passage three, both MSCs showed fibroblast-like morphology. The proliferation capacity was significantly increased in SF-MSCs compared to BM-MSCs. Furthermore, SF-MSCs showed an enhanced expression of transcription factors than BM-MSCs. SF-MSCs exhibited lower differentiation potential toward adipocytes than BM-MSCs. However, the osteoblast differentiation potential was similar in MSCs from both sources. Chondrogenic pellets obtained from SF-MSCs revealed higher levels of chondrocyte-specific markers than those from BM-MSCs. Additionally, glycosaminoglycan (GAG) content was elevated in SF-MSCs related to BM-MSCs. This is, to our knowledge, the first study to establish BM-MSCs and SF-MSCs from the same donor and to demonstrate in vitro differentiation potential into chondrocytes in camels.


2021 ◽  
Vol 22 (1) ◽  
pp. 394
Author(s):  
Simone Krueger ◽  
Alexander Riess ◽  
Anika Jonitz-Heincke ◽  
Alina Weizel ◽  
Anika Seyfarth ◽  
...  

In cell-based therapies for cartilage lesions, the main problem is still the formation of fibrous cartilage, caused by underlying de-differentiation processes ex vivo. Biophysical stimulation is a promising approach to optimize cell-based procedures and to adapt them more closely to physiological conditions. The occurrence of mechano-electrical transduction phenomena within cartilage tissue is physiological and based on streaming and diffusion potentials. The application of exogenous electric fields can be used to mimic endogenous fields and, thus, support the differentiation of chondrocytes in vitro. For this purpose, we have developed a new device for electrical stimulation of chondrocytes, which operates on the basis of capacitive coupling of alternating electric fields. The reusable and sterilizable stimulation device allows the simultaneous use of 12 cavities with independently applicable fields using only one main supply. The first parameter settings for the stimulation of human non-degenerative chondrocytes, seeded on collagen type I elastin-based scaffolds, were derived from numerical electric field simulations. Our first results suggest that applied alternating electric fields induce chondrogenic re-differentiation at the gene and especially at the protein level of human de-differentiated chondrocytes in a frequency-dependent manner. In future studies, further parameter optimizations will be performed to improve the differentiation capacity of human cartilage cells.


2020 ◽  
Vol 21 (4) ◽  
pp. 1444 ◽  
Author(s):  
Moritz Riedl ◽  
Christina Witzmann ◽  
Matthias Koch ◽  
Siegmund Lang ◽  
Maximilian Kerschbaum ◽  
...  

In vitro chondrogenically differentiated mesenchymal stem cells (MSCs) have a tendency to undergo hypertrophy, mirroring the fate of transient “chondrocytes” in the growth plate. As hypertrophy would result in ossification, this fact limits their use in cartilage tissue engineering applications. During limb development, retinoic acid receptor (RAR) signaling exerts an important influence on cell fate of mesenchymal progenitors. While retinoids foster hypertrophy, suppression of RAR signaling seems to be required for chondrogenic differentiation. Therefore, we hypothesized that treatment of chondrogenically differentiating hMSCs with the RAR inverse agonist, BMS204,493 (further named BMS), would attenuate hypertrophy. We induced hypertrophy in chondrogenic precultured MSC pellets by the addition of bone morphogenetic protein 4. Direct activation of the RAR pathway by application of the physiological RAR agonist retinoic acid (RA) further enhanced the hypertrophic phenotype. However, BMS treatment reduced hypertrophic conversion in hMSCs, shown by decreased cell size, number of hypertrophic cells, and collagen type X deposition in histological analyses. BMS effects were dependent on the time point of application and strongest after early treatment during chondrogenic precultivation. The possibility of modifing hypertrophic cartilage via attenuation of RAR signaling by BMS could be helpful in producing stable engineered tissue for cartilage regeneration.


2017 ◽  
Vol 32 (6) ◽  
pp. 775-787 ◽  
Author(s):  
Albert Jung ◽  
Preeti Makkar ◽  
Jhaleh Amirian ◽  
Byong-Taek Lee

The objective of the present study was to develop a novel hybrid multichannel biphasic calcium phosphate granule (MCG)-based composite system for cartilage regeneration. First, hyaluronic acid-gelatin (HG) hydrogel was coated onto MCG matrix (MCG-HG). Poly(lactic-co-glycolic acid) (PLGA) microspheres was separately prepared and modified with polydopamine subsequent to BMP-7 loading (B). The surface-modified microspheres were finally embedded into MCG-HG scaffold to develop the novel hybrid (MCG-HG-PLGA-PD-B) composite system. The newly developed MCG-HG-PLGA-PD-B composite was then subjected to scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier Transform infrared spectroscopy, porosity, compressive strength, swelling, BMP-7 release and in-vitro biocompatibility studies. Results showed that 60% of BMP-7 retained on the granular surface after 28 days. A hybrid MCG-HG-PLGA-PD-B composite scaffold exhibited higher swelling and compressive strength compared to MCG-HG or MCG. In-vitro studies showed that MCG-HG-PLGA-PD-B had improved cell viability and cell proliferation for both MC3T3-E1 pre-osteoblasts and ATDC5 pre-chondrocytes cell line with respect to MCG-HG or MCG scaffold. Our results suggest that a hybrid MCG-HG-PLGA-PD-B composite scaffold can be a promising candidate for cartilage regeneration applications.


2006 ◽  
Vol 326-328 ◽  
pp. 883-888 ◽  
Author(s):  
Jin Sang Lee ◽  
Byung Kim ◽  
Min Soo Kim ◽  
Seung Jae Lee ◽  
Sung Won Kim ◽  
...  

In this study, we investigated the effect of the use of alginate sponge as a chondrocyte-3D scaffold for the construction of a cartilage graft. Alginate sponge was made by 5% alginic acid which was crosslinked by CaCl2. Chondrocytes were obtained from a nasal septum after the operation and cultured in 3D alginate sponge. For analysis of cell differentiation, we have checked aggrecan, collagen type I and II using RT-PCR and performed the histological and scanning electron microscopy analysis. Our experiments showed that alginate sponge of 5% promoted sufficient chondrocyte proliferation and differentiation, resulting in the formation of a specific cartilage matrix. The sponge presents new perspectives with respect to in vitro production of "artificial" cartilage. We conclude that the alginate sponges have potential as a scaffold for cartilage tissue engineering.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shivani Nanda ◽  
Nikhil Sood ◽  
B. V. K. Reddy ◽  
Tanmay S. Markandeywar

The aim of the study was to develop PVA-CS hydrogel scaffolds using glutaraldehyde as a cross-linking agent by chemical cross-linking method in order to obtain biomimetic scaffolds for articular cartilage regeneration. The introduction of PVA enhances the mechanical and bioadhesive properties to the native tissue while chondroitin sulphate enhances the glycosaminoglycan content of extracellular matrix. The role of hydrogel as cartilage regeneration scaffold was evaluated by swelling study, porosity, rheological behaviour, in vitro degradation, and quantification of released chondroitin sulphate. In vivo results showed that cross-linked hydrogels repaired defects with no sign of inflammation as it was well anchored to tissue in the formation of new articular surface. It may be concluded that the addition of chondroitin sulphate to the PVA polymer develops a novel composite with significant applications in cartilage tissue engineering.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5732
Author(s):  
Jianjing Lin ◽  
Li Wang ◽  
Jianhao Lin ◽  
Qiang Liu

Articular cartilage (AC) damage is quite common, but due to AC’s poor self-healing ability, the damage can easily develop into osteoarthritis (OA). To solve this problem, we developed a microsphere/hydrogel system that provides two growth factors that promote cartilage repair: transforming growth factor-β3 (TGF-β3) to enhance cartilage tissue formation and ghrelin synergy TGF-β to significantly enhance the chondrogenic differentiation. The hydrogel and microspheres were characterized in vitro, and the biocompatibility of the system was verified. Double emulsion solvent extraction technology (w/o/w) is used to encapsulate TGF-β3 and ghrelin into microspheres, and these microspheres are encapsulated in a hydrogel to continuously release TGF-β3 and ghrelin. According to the chondrogenic differentiation ability of mesenchymal stem cells (MSCs) in vitro, the concentrations of the two growth factors were optimized to promote cartilage regeneration.


Osteology ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 149-174
Author(s):  
Naveen Jeyaraman ◽  
Gollahalli Shivashankar Prajwal ◽  
Madhan Jeyaraman ◽  
Sathish Muthu ◽  
Manish Khanna

The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yunsheng Dong ◽  
Yufei Liu ◽  
Yuehua Chen ◽  
Xun Sun ◽  
Lin Zhang ◽  
...  

AbstractHydrogels have been extensively favored as drug and cell carriers for the repair of knee cartilage defects. Recruiting mesenchymal stem cells (MSCs) in situ to the defect region could reduce the risk of contamination during cell delivery, which is a highly promising strategy to enhance cartilage repair. Here, a cell-free cartilage tissue engineering (TE) system was developed by applying an injectable chitosan/silk fibroin hydrogel. The hydrogel system could release first stromal cell-derived factor-1 (SDF-1) and then kartogenin (KGN) in a unique sequential drug release mode, which could spatiotemporally promote the recruitment and chondrogenic differentiation of MSCs. This system showed good performance when formulated with SDF-1 (200 ng/mL) and PLGA microspheres loaded with KGN (10 μΜ). The results showed that the hydrogel had good injectability and a reticular porous structure. The microspheres were distributed uniformly in the hydrogel and permitted the sequential release of SDF-1 and KGN. The results of in vitro experiments showed that the hydrogel system had good cytocompatibility and promoted the migration and differentiation of MSCs into chondrocytes. In vivo experiments on articular cartilage defects in rabbits showed that the cell-free hydrogel system was beneficial for cartilage regeneration. Therefore, the composite hydrogel system shows potential for application in cell-free cartilage TE.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yu Zhang ◽  
Shuyun Liu ◽  
Weimin Guo ◽  
Chunxiang Hao ◽  
Mingjie Wang ◽  
...  

Seed cells of articular cartilage tissue engineering face many obstacles in their application because of the dedifferentiation of chondrocytes or unstable chondrogenic differentiation status of pluripotent stem cells. To overcome mentioned dilemmas, a simulation of the articular cartilage microenvironment was constructed by primary articular cartilage cells (pACs) and acellular cartilage extracellular matrix- (ACECM-) oriented scaffold cocultured with human umbilical cord Wharton’s jelly-derived mesenchymal stem cells (hWJMSCs) in vitro. The coculture groups showed more affluent cartilage special matrix ingredients including collagen II and aggrecan based on the results of histological staining and western blotting and cut down as many pACs as possible. The RT-PCR and cell viability experiments also demonstrated that hWJMSCs were successfully induced to differentiate into chondrocytes when cultured in the simulated cartilage microenvironment, as confirmed by the significant upregulation of collagen II and aggrecan, while the cell proliferation activity of pACs was significantly improved by cell-cell interactions. Therefore, compared with monoculture and chondrogenic induction of inducers, coculture providing a simulated native articular microenvironment was a potential and temperate way to regulate the biological behaviors of pACs and hWJMSCs to regenerate the hyaline articular cartilage.


Sign in / Sign up

Export Citation Format

Share Document