scholarly journals Designing Functionalized Polyelectrolyte Microcapsules for Cancer Treatment

Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3055
Author(s):  
Daria Kalenichenko ◽  
Galina Nifontova ◽  
Alexander Karaulov ◽  
Alyona Sukhanova ◽  
Igor Nabiev

The engineering of delivery systems for drugs and contrasting labels ensuring the simultaneous imaging and treatment of malignant tumors is an important hurdle in developing new tools for cancer therapy and diagnosis. Polyelectrolyte microcapsules (MCs), formed by nanosized interpolymer complexes, represent a promising platform for the designing of multipurpose agents, functionalized with various components, including high- and low-molecular-weight substances, metal nanoparticles, and organic fluorescent dyes. Here, we have developed size-homogenous MCs with different structures (core/shell and shell types) and microbeads containing doxorubicin (DOX) as a model anticancer drug, and fluorescent semiconductor nanocrystals (quantum dots, QDs) as fluorescent nanolabels. In this study, we suggest approaches to the encapsulation of DOX at different stages of the MC synthesis and describe the optimal conditions for the optical encoding of MCs with water-soluble QDs. The results of primary characterization of the designed microcarriers, including particle analysis, the efficacy of DOX and QDs encapsulation, and the drug release kinetics are reported. The polyelectrolyte MCs developed here ensure a modified (prolonged) release of DOX, under conditions close to normal and tumor tissues; they possess a bright fluorescence that paves the way to their exploitation for the delivery of antitumor drugs and fluorescence imaging.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 209 ◽  
Author(s):  
Ajeesh Chandrasekharan ◽  
Young Jun Hwang ◽  
Keum-Yong Seong ◽  
Samdae Park ◽  
Sodam Kim ◽  
...  

Chitosan has been widely used as a nature-derived polymeric biomaterial due to its high biocompatibility and abundance. However, poor solubility in aqueous solutions of neutral pH and multiple fabrication steps for the molding process limit its application to microneedle technology as a drug delivery carrier. Here, we present a facile method to prepare water-soluble chitosan and its application for sustained transdermal drug delivery. The water-soluble chitosan was prepared by acid hydrolysis using trifluoroacetic acid followed by dialysis in 0.1 M NaCl solutions. We successfully fabricated bullet-shaped microneedle (MN) arrays by the single molding process with neutral aqueous chitosan solutions (pH 6.0). The chitosan MN showed sufficient mechanical properties for skin insertion and, interestingly, exhibited slow dissolving behavior in wet conditions, possibly resulting from a physical crosslinking of chitosan chains. Chitosan MN patches loading rhodamine B, a model hydrophilic drug, showed prolonged release kinetics in the course of the dissolving process for more than 72 h and they were found to be biocompatible to use. Since the water-soluble chitosan can be used for MN fabrication in the mild conditions (neutral pH and 25 °C) required for the loading of bioactive agents such as proteins and achieve a prolonged release, this biocompatible chitosan MN would be suitable for sustained transdermal drug delivery of a diverse range of drugs.


2012 ◽  
Vol 8 ◽  
pp. 2091-2099 ◽  
Author(s):  
Francesco Trotta ◽  
Marco Zanetti ◽  
Roberta Cavalli

Cyclodextrin-based nanosponges, which are proposed as a new nanosized delivery system, are innovative cross-linked cyclodextrin polymers nanostructured within a three-dimensional network. This type of cyclodextrin polymer can form porous insoluble nanoparticles with a crystalline or amorphous structure and spherical shape or swelling properties. The polarity and dimension of the polymer mesh can be easily tuned by varying the type of cross-linker and degree of cross-linking. Nanosponge functionalisation for site-specific targeting can be achieved by conjugating various ligands on their surface. They are a safe and biodegradable material with negligible toxicity on cell cultures and are well-tolerated after injection in mice. Cyclodextrin-based nanosponges can form complexes with different types of lipophilic or hydrophilic molecules. The release of the entrapped molecules can be varied by modifying the structure to achieve prolonged release kinetics or a faster release. The nanosponges could be used to improve the aqueous solubility of poorly water-soluble molecules, protect degradable substances, obtain sustained delivery systems or design innovative drug carriers for nanomedicine.


Photonics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 117 ◽  
Author(s):  
Galina Nifontova ◽  
Daria Kalenichenko ◽  
Maria Baryshnikova ◽  
Fernanda Ramos Gomes ◽  
Frauke Alves ◽  
...  

Fluorescent semiconductor nanocrystals or quantum dots (QDs) are characterized by unique optical properties, including a high photostability, wide absorption spectrum, and narrow, symmetric fluorescence spectrum. This makes them attractive fluorescent nanolabels for the optical encoding of microcarriers intended for targeted drug delivery, diagnosis, and imaging of transport processes on the body, cellular, and subcellular levels. Incorporation of QDs into carriers in the form of polyelectrolyte microcapsules through layer-by-layer adsorption of oppositely charged polyelectrolyte polymers yields microcapsules with a bright fluorescence signal and adaptable size, structure, and surface characteristics without using organic solvents. The easily modifiable surface of the microcapsules allows for its subsequent functionalization with capture molecules, such as antibodies, which ensures specific and selective interaction with cells, including tumor cells, with the use of the bioconjugation technique developed here. We obtained stable water-soluble nanolabels based on QDs whose surface was modified with polyethylene glycol (PEG) derivatives and determined their colloidal and optical characteristics. The obtained nanocrystals were used to encode polyelectrolyte microcapsules optically. The microcapsule surface was modified with humanized monoclonal antibodies (Abs) recognizing a cancer marker, epidermal growth factor receptor (EGFR). The possibility of effective, specific, and selective delivery of the microcapsules to tumor cells expressing EGFR has been demonstrated. The results show that the QD-encoded polyelectrolyte microcapsules functionalized with monoclonal Abs against EGFR can be used for targeted imaging and diagnosis.


2017 ◽  
Vol 23 (3) ◽  
pp. 467-480 ◽  
Author(s):  
Satyanarayan Pattnaik ◽  
Kamla Pathak

Background: Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Description: Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. Conclusion: This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed.


2020 ◽  
Vol 23 (10) ◽  
pp. 1064-1079
Author(s):  
Ahmet Alper Öztürk ◽  
İrem Namlı ◽  
Kadri Güleç ◽  
Şennur Görgülü

Aims: To prepare lamivudine (LAM)-loaded-nanoparticles (NPs) that can be used in lung cancer treatment. To change the antiviral indication of LAM to anticancer. Background: The development of anticancer drugs is a difficult process. One approach to accelerate the availability of drugs is to reclassify drugs approved for other conditions as anticancer. The most common route of administration of anticancer drugs is intravenous injection. Oral administration of anticancer drugs may considerably change current treatment modalities of chemotherapy and improve the life quality of cancer patients. There is also a potentially significant economic advantage. Objective: To characterize the LAM-loaded-NPs and examine the anticancer activity. Methods: LAM-loaded-NPs were prepared using Nano Spray-Dryer. Properties of NPs were elucidated by particle size (PS), polydispersity index (PDI), zeta potential (ZP), SEM, encapsulation efficiency (EE%), dissolution, release kinetics, DSC and FT-IR. Then, the anticancer activity of all NPs was examined. Results: The PS values of the LAM-loaded-NPs were between 373 and 486 nm. All NPs prepared have spherical structure and positive ZP. EE% was in a range of 61-79%. NPs showed prolonged release and the release kinetics fitted to the Weibull model. NPs structures were clarified by DSC and FT-IR analysis. The results showed that the properties of NPs were directly related to the drug:polymer ratio of feed solution. NPs have potential anticancer properties against A549 cell line at low concentrations and non-toxic to CCD 19-Lu cell line. Conclusion: NPs have potential anticancer properties against human lung adenocarcinoma cells and may induce cell death effectively and be a potent modality to treat this type of cancer. These experiments also indicate that our formulations are non-toxic to normal cells. It is clear that this study would bring a new perspective to cancer therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sam Wong ◽  
Simone Alidori ◽  
Barbara P. Mello ◽  
Bryan Aristega Almeida ◽  
David Ulmert ◽  
...  

AbstractCellulose nanocrystals (CNC) are linear organic nanomaterials derived from an abundant naturally occurring biopolymer resource. Strategic modification of the primary and secondary hydroxyl groups on the CNC introduces amine and iodine group substitution, respectively. The amine groups (0.285 mmol of amine per gram of functionalized CNC (fCNC)) are further reacted with radiometal loaded-chelates or fluorescent dyes as tracers to evaluate the pharmacokinetic profile of the fCNC in vivo. In this way, these nanoscale macromolecules can be covalently functionalized and yield water-soluble and biocompatible fibrillar nanoplatforms for gene, drug and radionuclide delivery in vivo. Transmission electron microscopy of fCNC reveals a length of 162.4 ± 16.3 nm, diameter of 11.2 ± 1.52 nm and aspect ratio of 16.4 ± 1.94 per particle (mean ± SEM) and is confirmed using atomic force microscopy. Size exclusion chromatography of macromolecular fCNC describes a fibrillar molecular behavior as evidenced by retention times typical of late eluting small molecules and functionalized carbon nanotubes. In vivo, greater than 50% of intravenously injected radiolabeled fCNC is excreted in the urine within 1 h post administration and is consistent with the pharmacological profile observed for other rigid, high aspect ratio macromolecules. Tissue distribution of fCNC shows accumulation in kidneys, liver, and spleen (14.6 ± 6.0; 6.1 ± 2.6; and 7.7 ± 1.4% of the injected activity per gram of tissue, respectively) at 72 h post-administration. Confocal fluorescence microscopy reveals cell-specific accumulation in these target tissue sinks. In summary, our findings suggest that functionalized nanocellulose can be used as a potential drug delivery platform for the kidneys.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 455
Author(s):  
Emilia Szymańska ◽  
Katarzyna Woś-Latosi ◽  
Julia Jacyna ◽  
Magdalena Dąbrowska ◽  
Joanna Potaś ◽  
...  

Microparticles containing water-soluble zidovudine were prepared by spray-drying using chitosan glutamate and beta-glycerophosphate as an ion crosslinker (CF). The Box–Behnken design was applied to optimize the microparticles in terms of their drug loading and release behavior. Physicochemical studies were undertaken to support the results from dissolution tests and to evaluate the impact of the crosslinking ratio on the microparticles’ characteristics. The zidovudine dissolution behavior had a complex nature which comprised two phases: an initial burst effect followed with a prolonged release stage. The initial drug release, which can be modulated by the crosslinking degree, was primarily governed by the dissolution of the drug crystals located on the microparticles’ surfaces. In turn, the further dissolution stage was related to the drug diffusion from the swollen polymer matrix and was found to correlate with the drug loading. Differential Scanning Calorimetry (DSC) studies revealed the partial incorporation of a non-crystallized drug within the polymer matrix, which correlated with the amount of CF. Although CF influenced the swelling capacity of chitosan glutamate microparticles, surprisingly a higher amount of CF did not impact the time required for 80% of the drug to be released markedly. The formulation with the lowest polymer:CF ratio, 3:1, was selected as optimal, providing satisfactory drug loading and displaying a moderate burst effect within the first 30 min of the study, followed with a prolonged drug release of up to 210 min.


2015 ◽  
Vol 112 (8) ◽  
pp. E826-E835 ◽  
Author(s):  
Ian C. Shieh ◽  
Joseph A. Zasadzinski

Contrast in confocal microscopy of phase-separated monolayers at the air–water interface can be generated by the selective adsorption of water-soluble fluorescent dyes to disordered monolayer phases. Optical sectioning minimizes the fluorescence signal from the subphase, whereas convolution of the measured point spread function with a simple box model of the interface provides quantitative assessment of the excess dye concentration associated with the monolayer. Coexisting liquid-expanded, liquid-condensed, and gas phases could be visualized due to differential dye adsorption in the liquid-expanded and gas phases. Dye preferentially adsorbed to the liquid-disordered phase during immiscible liquid–liquid phase coexistence, and the contrast persisted through the critical point as shown by characteristic circle-to-stripe shape transitions. The measured dye concentration in the disordered phase depended on the phase composition and surface pressure, and the dye was expelled from the film at the end of coexistence. The excess concentration of a cationic dye within the double layer adjacent to an anionic phospholipid monolayer was quantified as a function of subphase ionic strength, and the changes in measured excess agreed with those predicted by the mean-field Gouy–Chapman equations. This provided a rapid and noninvasive optical method of measuring the fractional dissociation of lipid headgroups and the monolayer surface potential.


2021 ◽  
Vol 1 (2) ◽  
pp. 023-037
Author(s):  
Shailaja D ◽  
Latha K ◽  
Manasa D ◽  
Shirisha A ◽  
Padmavathi R ◽  
...  

Proniosomal technology is a novel solution for poorly soluble drugs. Proniosomes are water-soluble carrier particles which are coated with non-ionic surfactants. Proniosomal gels were prepared by coacervation phase separation method using non-ionic surfactants, lipid carriers and cholesterol as a membrane stabilizer. FTIR compatibility studies revealed that the drug and excipients were compatible. All formulations were evaluated for pH, drug content, extrudability, spreadability, viscosity, in-vitro, ex-vivo, skin irritation and stability studies. Among formulations prepared, F80H1 has shown higher % EE (83.02) and least diffusion through dialysis membrane i.e., 17.68%. With ex-vivo studies, F80H1 formulation has shown highest skin deposition and lower flux of sertaconazole nitrate through the rat skin. F80H1 was selected as final optimized formulation. F80H1 exhibited good stability and SEM studies revealed that the vesicles were spherical in shape. The optimized formulation was found to follow zero order release kinetics and korsmeyer-peppas release mechanism. F80H1 found to be non-irritant and stable from skin irritation and stability studies.


Sign in / Sign up

Export Citation Format

Share Document