scholarly journals Correlative Analysis of the Dimensional Properties of Bipyramidal Titania Nanoparticles by Complementing Electron Microscopy with Other Methods

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3359
Author(s):  
Loïc Crouzier ◽  
Nicolas Feltin ◽  
Alexandra Delvallée ◽  
Francesco Pellegrino ◽  
Valter Maurino ◽  
...  

In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano-bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron-transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM-in-SEM (or T-SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X-ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab-initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration.

2014 ◽  
Vol 20 (2) ◽  
pp. 602-612 ◽  
Author(s):  
Vasile-Dan Hodoroaba ◽  
Charles Motzkus ◽  
Tatiana Macé ◽  
Sophie Vaslin-Reimann

AbstractThe analytical performance of high-resolution scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) for accurate determination of the size, size distribution, qualitative elemental analysis of nanoparticles (NPs) was systematically investigated. It is demonstrated how powerful high-resolution SEM is by using both mono- and bi-modal distributions of SiO2 airborne NPs collected on appropriate substrates after their generation from colloidal suspension. The transmission mode of the SEM (TSEM) is systematically employed for NPs prepared on thin film substrates such as transmission electron microscopy grids. Measurements in the transmission mode were performed by using a “single-unit” TSEM transmission setup as manufactured and patented by Zeiss. This alternative to the “conventional” STEM detector consists of a special sample holder that is used in conjunction with the in-place Everhart–Thornley detector. In addition, the EDX capabilities for imaging NPs, highlighting the promising potential with respect to exploitation of the sensitivity of the new large area silicon drift detector energy dispersive X-ray spectrometers were also investigated. The work was carried out in the frame of a large prenormative VAMAS (Versailles Project on Advanced Materials and Standards) project, dedicated to finding appropriate methods and procedures for traceable characterization of NP size and size distribution.


Author(s):  
B. B. Rath ◽  
J. E. O'Neal ◽  
R. J. Lederich

Addition of small amounts of erbium has a profound effect on recrystallization and grain growth in titanium. Erbium, because of its negligible solubility in titanium, precipitates in the titanium matrix as a finely dispersed second phase. The presence of this phase, depending on its average size, distribution, and volume fraction in titanium, strongly inhibits the migration of grain boundaries during recrystallization and grain growth, and thus produces ultimate grains of sub-micrometer dimensions. A systematic investigation has been conducted to study the isothermal grain growth in electrolytically pure titanium and titanium-erbium alloys (Er concentration ranging from 0-0.3 at.%) over the temperature range of 450 to 850°C by electron microscopy.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2849
Author(s):  
Marcin Jan Dośpiał

This paper presents domain and structure studies of bonded magnets made from nanocrystalline Nd-(Fe, Co)-B powder. The structure studies were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Mössbauer spectroscopy and X-ray diffractometry. On the basis of performed qualitative and quantitative phase composition studies, it was found that investigated alloy was mainly composed of Nd2(Fe-Co)14B hard magnetic phase (98 vol%) and a small amount of Nd1.1Fe4B4 paramagnetic phase (2 vol%). The best fit of grain size distribution was achieved for the lognormal function. The mean grain size determined from transmission electron microscopy (TEM) images on the basis of grain size distribution and diffraction pattern using the Bragg equation was about ≈130 nm. HRTEM images showed that over-stoichiometric Nd was mainly distributed on the grain boundaries as a thin amorphous border of 2 nm in width. The domain structure was investigated using a scanning electron microscope and metallographic light microscope, respectively, by Bitter and Kerr methods, and by magnetic force microscopy. Domain structure studies revealed that the observed domain structure had a labyrinth shape, which is typically observed in magnets, where strong exchange interactions between grains are present. The analysis of the domain structure in different states of magnetization revealed the dynamics of the reversal magnetization process.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3874
Author(s):  
Dominika Veselinyová ◽  
Jana Mašlanková ◽  
Katarina Kalinová ◽  
Helena Mičková ◽  
Mária Mareková ◽  
...  

We are experiencing rapid progress in all types of imaging techniques used in the detection of various numbers and types of mutation. In situ hybridization (ISH) is the primary technique for the discovery of mutation agents, which are presented in a variety of cells. The ability of DNA to complementary bind is one of the main principles in every method used in ISH. From the first use of in situ techniques, scientists paid attention to the improvement of the probe design and detection, to enhance the fluorescent signal intensity and inhibition of cross-hybrid presence. This article discusses the individual types and modifications, and is focused on explaining the principles and limitations of ISH division on different types of probes. The article describes a design of probes for individual types of in situ hybridization (ISH), as well as the gradual combination of several laboratory procedures to achieve the highest possible sensitivity and to prevent undesirable events accompanying hybridization. The article also informs about applications of the methodology, in practice and in research, to detect cell to cell communication and principles of gene silencing, process of oncogenesis, and many other unknown processes taking place in organisms at the DNA/RNA level.


2021 ◽  
Vol 22 (11) ◽  
pp. 6000
Author(s):  
Sara Bertuzzi ◽  
Ana Gimeno ◽  
Ane Martinez-Castillo ◽  
Marta G. Lete ◽  
Sandra Delgado ◽  
...  

The interaction of multi-LacNAc (Galβ1-4GlcNAc)-containing N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers with human galectin-1 (Gal-1) and the carbohydrate recognition domain (CRD) of human galectin-3 (Gal-3) was analyzed using NMR methods in addition to cryo-electron-microscopy and dynamic light scattering (DLS) experiments. The interaction with individual LacNAc-containing components of the polymer was studied for comparison purposes. For Gal-3 CRD, the NMR data suggest a canonical interaction of the individual small-molecule bi- and trivalent ligands with the lectin binding site and better affinity for the trivalent arrangement due to statistical effects. For the glycopolymers, the interaction was stronger, although no evidence for forming a large supramolecule was obtained. In contrast, for Gal-1, the results indicate the formation of large cross-linked supramolecules in the presence of multivalent LacNAc entities for both the individual building blocks and the polymers. Interestingly, the bivalent and trivalent presentation of LacNAc in the polymer did not produce such an increase, indicating that the multivalency provided by the polymer is sufficient for triggering an efficient binding between the glycopolymer and Gal-1. This hypothesis was further demonstrated by electron microscopy and DLS methods.


2016 ◽  
Vol 72 (7) ◽  
pp. 892-903 ◽  
Author(s):  
Steven Dajnowicz ◽  
Sean Seaver ◽  
B. Leif Hanson ◽  
S. Zoë Fisher ◽  
Paul Langan ◽  
...  

Neutron crystallography provides direct visual evidence of the atomic positions of deuterium-exchanged H atoms, enabling the accurate determination of the protonation/deuteration state of hydrated biomolecules. Comparison of two neutron structures of hemoglobins, human deoxyhemoglobin (T state) and equine cyanomethemoglobin (R state), offers a direct observation of histidine residues that are likely to contribute to the Bohr effect. Previous studies have shown that the T-state N-terminal and C-terminal salt bridges appear to have a partial instead of a primary overall contribution. Four conserved histidine residues [αHis72(EF1), αHis103(G10), αHis89(FG1), αHis112(G19) and βHis97(FG4)] can become protonated/deuterated from the R to the T state, while two histidine residues [αHis20(B1) and βHis117(G19)] can lose a proton/deuteron. αHis103(G10), located in the α1:β1dimer interface, appears to be a Bohr group that undergoes structural changes: in the R state it is singly protonated/deuterated and hydrogen-bonded through a water network to βAsn108(G10) and in the T state it is doubly protonated/deuterated with the network uncoupled. The very long-term H/D exchange of the amide protons identifies regions that are accessible to exchange as well as regions that are impermeable to exchange. The liganded relaxed state (R state) has comparable levels of exchange (17.1% non-exchanged) compared with the deoxy tense state (T state; 11.8% non-exchanged). Interestingly, the regions of non-exchanged protons shift from the tetramer interfaces in the T-state interface (α1:β2and α2:β1) to the cores of the individual monomers and to the dimer interfaces (α1:β1and α2:β2) in the R state. The comparison of regions of stability in the two states allows a visualization of the conservation of fold energy necessary for ligand binding and release.


Author(s):  
B. Bal ◽  
M. Koyama ◽  
D. Canadinc ◽  
G. Gerstein ◽  
H. J. Maier ◽  
...  

This paper presents a combined experimental and theoretical analysis focusing on the individual roles of microdeformation mechanisms that are simultaneously active during the deformation of twinning-induced plasticity (TWIP) steels in the presence of hydrogen. Deformation responses of hydrogen-free and hydrogen-charged TWIP steels were examined with the aid of thorough electron microscopy. Specifically, hydrogen charging promoted twinning over slip–twin interactions and reduced ductility. Based on the experimental findings, a mechanism-based microscale fracture model was proposed, and incorporated into a visco-plastic self-consistent (VPSC) model to account for the stress–strain response in the presence of hydrogen. In addition, slip-twin and slip–grain boundary interactions in TWIP steels were also incorporated into VPSC, in order to capture the deformation response of the material in the presence of hydrogen. The simulation results not only verify the success of the proposed hydrogen embrittlement (HE) mechanism for TWIP steels, but also open a venue for the utility of these superior materials in the presence of hydrogen.


1959 ◽  
Vol 5 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Maurice H. Bernstein ◽  
Daniel C. Pease

The fine structure of the tapetum of the cat eye has been investigated by electron microscopy. The tapetum is made up of modified choroidal cells, seen as polygonal plates grouped around penetrating blood vessels which terminate in the anastomosing capillary network of the choriocapillaris. The tapetal cells are rectangular in cross-section, set in regular brick-like rows, and attain a depth of some thirty-five cell layers in the central region. This number is gradually reduced peripherally, and is replaced at the margin of the tapetum by normal choroidal tissue. The individual cells are packed with long slender rods 0.1 µ by 4 to 5 µ. The rods are packed in groups and with their long axes oriented roughly parallel to the plane of the retinal surface. Each cell contains several such groups. Cells at the periphery or in the outer layers of the tapetum are frequently seen to contain both tapetal rods and melanin granules, the latter typical of the choroidal melanocytes. Also melanocyte granules may have intermediate shapes. These observations plus the similar density of the two inclusions lead to the belief that the tapetal rods may be melanin derivatives. A fibrous connective tissue layer lies between the tapetum and the retina. The subretinal capillary network, the choriocapillaris, rests on this layer and is covered by the basement membrane of the retinal epithelium. The cytoplasm of the retinal epithelium exhibits marked absorptive modifications where it comes in contact with the vessels of the choriocapillaris. This fibrous layer and the basement membrane of the retinal epithelium apparently comprise the structural elements of Bruch's membrane.


2011 ◽  
Vol 19 (2) ◽  
pp. 12-15 ◽  
Author(s):  
S. N. Raman ◽  
D. F. Paul ◽  
J. S. Hammond ◽  
K. D. Bomben

Over the past decade, the field of nanotechnology has expanded, and the most heavily used nanoscale characterization/imaging techniques have been scanning probe microscopy (SPM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Although these high-resolution imaging techniques help visualize nanostructures, it is essential to understand the chemical nature of these materials and their growth mechanisms. Surface modifications in the first few nanometers can alter the bulk properties of these nanostructures, and conventional characterization techniques, including energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS) associated with SEM and TEM are not suited to detecting these surface modifications except in special, favorable specimens. A modern state-of-the-art scanning Auger electron spectroscopy (AES) instrument provides valuable elemental and chemical characterization of nanostructures with a lateral spatial resolution better than 10 nm and a depth resolution of a few nm. In this article we review the technique of scanning AES and highlight its unique analytical capabilities in the areas of nanotechnology, metallurgy, and semiconductors.


Sign in / Sign up

Export Citation Format

Share Document