scholarly journals Sputtering of Electrospun Polymer-Based Nanofibers for Biomedical Applications: A Perspective

Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 77 ◽  
Author(s):  
Hana Kadavil ◽  
Moustafa Zagho ◽  
Ahmed Elzatahry ◽  
Talal Altahtamouni

Electrospinning has gained wide attention recently in biomedical applications. Electrospun biocompatible scaffolds are well-known for biomedical applications such as drug delivery, wound dressing, and tissue engineering applications. In this review, the synthesis of polymer-based fiber composites using an electrospinning technique is discussed. Formerly, metal particles were then deposited on the surface of electrospun fibers using sputtering technology. Key nanometals for biomedical applications including silver and copper nanoparticles are discussed throughout this review. The formulated scaffolds were found to be suitable candidates for biomedical uses such as antibacterial coatings, surface modification for improving biocompatibility, and tissue engineering. This review briefly mentions the characteristics of the nanostructures while focusing on how nanostructures hold potential for a wide range of biomedical applications.

2022 ◽  
Vol 23 (2) ◽  
pp. 610
Author(s):  
Teresa Aditya ◽  
Jean Paul Allain ◽  
Camilo Jaramillo ◽  
Andrea Mesa Restrepo

Bacterial cellulose is a naturally occurring polysaccharide with numerous biomedical applications that range from drug delivery platforms to tissue engineering strategies. BC possesses remarkable biocompatibility, microstructure, and mechanical properties that resemble native human tissues, making it suitable for the replacement of damaged or injured tissues. In this review, we will discuss the structure and mechanical properties of the BC and summarize the techniques used to characterize these properties. We will also discuss the functionalization of BC to yield nanocomposites and the surface modification of BC by plasma and irradiation-based methods to fabricate materials with improved functionalities such as bactericidal capabilities.


Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 654 ◽  
Author(s):  
Ana Isabel Barbosa ◽  
Ana Joyce Coutinho ◽  
Sofia A. Costa Lima ◽  
Salette Reis

The use of marine-origin polysaccharides has increased in recent research because they are abundant, cheap, biocompatible, and biodegradable. These features motivate their application in nanotechnology as drug delivery systems; in tissue engineering, cancer therapy, or wound dressing; in biosensors; and even water treatment. Given the physicochemical and bioactive properties of fucoidan and chitosan, a wide range of nanostructures has been developed with these polysaccharides per se and in combination. This review provides an outline of these marine polysaccharides, including their sources, chemical structure, biological properties, and nanomedicine applications; their combination as nanoparticles with descriptions of the most commonly used production methods; and their physicochemical and biological properties applied to the design of nanoparticles to deliver several classes of compounds. A final section gives a brief overview of some biomedical applications of fucoidan and chitosan for tissue engineering and wound healing.


2013 ◽  
Vol 48 (8) ◽  
pp. 3027-3054 ◽  
Author(s):  
Yi-Fan Goh ◽  
Imran Shakir ◽  
Rafaqat Hussain

2020 ◽  
Vol 7 (10) ◽  
pp. 4032-4040
Author(s):  
Esam Bashir Yahya ◽  
Marwa Mohammed Alzalouk ◽  
Khalifa A. Alfallous ◽  
Abdullah F. Abogmaza

Aerogels have been steadily developed since its first invention to become one of the most promising materials for various medical and non-medical applications. It has been prepared from organic and inorganic materials, in pure forms or composites. Cellulose-based aerogels are considered one of the promising materials in biomedical applications due to their availability, degradability, biocompatibility and non-cytotoxicity compared to conventional silica or metal-based aerogels. The unique properties of such materials permit their utilization in drug delivery, biosensing, tissue engineering scaffolds, and wound dressing. This review presents a summary of aerogel development as well as the properties and applications of aerogels. Herein, we further discuss the recent works pertaining to utilization of cellulose-based aerogels for antibacterial delivery.


2020 ◽  
Vol 27 (28) ◽  
pp. 4647-4659 ◽  
Author(s):  
Haitang Liu ◽  
Ting Chen ◽  
Cuihua Dong ◽  
Xuejun Pan

Background: Hydrogel has a three-dimensional network structure that is able to absorb a large amount of water/liquid and maintain its original structure. Hemicellulose (HC) is the second most abundant polysaccharide after cellulose in plants and a heterogeneous polysaccharide consisting of various saccharide units. The unique physical and chemical properties of hemicellulose make it a promising material for hydrogels. Methods: This review first summarizes the three research hotspots on the hemicellulose-based hydrogels: intelligence, biodegradability and biocompatibility. It also overviews the progress in the fabrication and applications of hemicellulose hydrogels in the drug delivery system and tissue engineering (articular cartilage, cell immobilization, and wound dressing). Results: Hemicellulose-based hydrogels have many unique properties, such as stimuliresponsibility, biodegradability and biocompatibility. Interpenetrating networking can endow appropriate mechanical properties to hydrogels. These properties make the hemicellulose-based hydrogels promising materials in biomedical applications such as drug delivery systems and tissue engineering (articular cartilage, cell immobilization, and wound dressing). Conclusion: Hydrogels have been widely used in biomedicine and tissue engineering areas, such as tissue fillers, drug release agents, enzyme encapsulation, protein electrophoresis, contact lenses, artificial plasma, artificial skin, and tissue engineering scaffold materials. This article reviews the recent progress in the fabrication and applications of hemicellulose-based hydrogels in the biomedical field.


2021 ◽  
Author(s):  
Marissa Morales-Moctezuma ◽  
Sebastian G Spain

Nanogels have emerged as innovative platforms for numerous biomedical applications including gene and drug delivery, biosensors, imaging, and tissue engineering. Polymerisation-induced thermal self-assembly (PITSA) has been shown to be suitable...


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2896
Author(s):  
Sara Ferraris ◽  
Silvia Spriano ◽  
Alessandro Calogero Scalia ◽  
Andrea Cochis ◽  
Lia Rimondini ◽  
...  

Electrospinning is gaining increasing interest in the biomedical field as an eco-friendly and economic technique for production of random and oriented polymeric fibers. The aim of this review was to give an overview of electrospinning potentialities in the production of fibers for biomedical applications with a focus on the possibility to combine biomechanical and topographical stimuli. In fact, selection of the polymer and the eventual surface modification of the fibers allow selection of the proper chemical/biological signal to be administered to the cells. Moreover, a proper design of fiber orientation, dimension, and topography can give the opportunity to drive cell growth also from a spatial standpoint. At this purpose, the review contains a first introduction on potentialities of electrospinning for the obtainment of random and oriented fibers both with synthetic and natural polymers. The biological phenomena which can be guided and promoted by fibers composition and topography are in depth investigated and discussed in the second section of the paper. Finally, the recent strategies developed in the scientific community for the realization of electrospun fibers and for their surface modification for biomedical application are presented and discussed in the last section.


Author(s):  
Francesca Persano ◽  
Svetlana Batasheva ◽  
Gölnur Fakhrullina ◽  
Giuseppe Gigli ◽  
Stefano Leporatti ◽  
...  

Inorganic materials, in particular nanoclays and silica nanoparticles, have attracted enormous attention due to their versatile and tuneable properties, making them ideal candidates for a wide range of biomedical applications, such as drug delivery.


2016 ◽  
Vol 8 (5) ◽  
pp. 654-677 ◽  
Author(s):  
Yang Lu ◽  
Jiangnan Huang ◽  
Guoqiang Yu ◽  
Romel Cardenas ◽  
Suying Wei ◽  
...  

2018 ◽  
Vol 53 ◽  
pp. 22-36 ◽  
Author(s):  
Habibollah Faraji ◽  
Reza Nedaeinia ◽  
Esmaeil Nourmohammadi ◽  
Bizan Malaekeh-Nikouei ◽  
Hamid Reza Sadeghnia ◽  
...  

Nanotechnology as a multidisciplinary and scientific innovation plays an important role in numerous biomedical applications, such as molecular imaging, biomarkers and biosensors and also drug delivery. A wide range of studies have been conducted on using of nanoparticles for early diagnosis and targeted drug therapy of various diseases. In fact, the small size, customized surface, upgraded solubility, or multi-functionality of nanoparticles enabled them to interact with complex cellular functions in new ways which opened many doors and created new biomedical applications. These studies demonstrated that nanotechnology vehicles can formulate biological products effectively, and this nano-formulated products with a potent ability against different diseases, were represented to have better biocompatibility, bioaccessibility and efficacy, under in vitro and in vivo conditions.


Sign in / Sign up

Export Citation Format

Share Document