scholarly journals Anti-Inflammatory Potential of Cow, Donkey and Goat Milk Extracellular Vesicles as Revealed by Metabolomic Profile

Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2908
Author(s):  
Samanta Mecocci ◽  
Federica Gevi ◽  
Daniele Pietrucci ◽  
Luca Cavinato ◽  
Francesco R. Luly ◽  
...  

In recent years, extracellular vesicles (EVs), cell-derived micro and nano-sized structures enclosed in a double-layer membrane, have been in the spotlight for their high potential in diagnostic and therapeutic applications. Indeed, they act as signal mediators between cells and/or tissues through different mechanisms involving their complex cargo and exert a number of biological effects depending upon EVs subtype and cell source. Being produced by almost all cell types, they are found in every biological fluid including milk. Milk EVs (MEVs) can enter the intestinal cells by endocytosis and protect their labile cargos against harsh conditions in the intestinal tract. In this study, we performed a metabolomic analysis of MEVs, from three different species (i.e., bovine, goat and donkey) by mass spectroscopy (MS) coupled with Ultrahigh-performance liquid chromatography (UHPLC). Metabolites, both common or specific of a species, were identified and enriched metabolic pathways were investigated, with the final aim to evaluate their anti-inflammatory and immunomodulatory properties in view of prospective applications as a nutraceutical in inflammatory conditions. In particular, metabolites transported by MEVs are involved in common pathways among the three species. These metabolites, such as arginine, asparagine, glutathione and lysine, show immunomodulating effects. Moreover, MEVs in goat milk showed a greater number of enriched metabolic pathways as compared to the other kinds of milk.

2021 ◽  
Vol 22 (12) ◽  
pp. 6507
Author(s):  
Giulia Cricrì ◽  
Linda Bellucci ◽  
Giovanni Montini ◽  
Federica Collino

Intercellular communication governs multicellular interactions in complex organisms. A variety of mechanisms exist through which cells can communicate, e.g., cell-cell contact, the release of paracrine/autocrine soluble molecules, or the transfer of extracellular vesicles (EVs). EVs are membrane-surrounded structures released by almost all cell types, acting both nearby and distant from their tissue/organ of origin. In the kidney, EVs are potent intercellular messengers released by all urinary system cells and are involved in cell crosstalk, contributing to physiology and pathogenesis. Moreover, urine is a reservoir of EVs coming from the circulation after crossing the glomerular filtration barrier—or originating in the kidney. Thus, urine represents an alternative source for biomarkers in kidney-related diseases, potentially replacing standard diagnostic techniques, including kidney biopsy. This review will present an overview of EV biogenesis and classification and the leading procedures for isolating EVs from body fluids. Furthermore, their role in intra-nephron communication and their use as a diagnostic tool for precision medicine in kidney-related disorders will be discussed.


2019 ◽  
Author(s):  
Benedikt Kirchner ◽  
Dominik Buschmann ◽  
Vijay Paul ◽  
Michael W. Pfaffl

Abstract Background Extracellular vesicles (EVs) such as exosomes are key regulators of intercellular communication that can be found in almost all bio fluids. Although studies in the last decade have made great headway in discerning the role of EVs in many physiological and pathophysiological processes, the bioavailability and impact of dietary EVs and their cargo still remain to be elucidated. Due to its widespread consumption and high content of EV-associated microRNAs and proteins, a major focus in this field has been set on EVs in bovine milk and colostrum. Despite promising in vitro studies in recent years that show high resiliency of milk EVs to degradation and uptake of milk EV cargo in a variety of intestinal and blood cell types, in vivo experiments continue to be inconclusive and sometimes outright contradictive. Results To resolve this discrepancy, we assessed the potential postprandial transfer of colostral EVs to the circulation of newborn calves by analysing colostrum-specific protein and miRNAs, including specific isoforms (isomiRs) in cells, EV isolations and unfractionated samples from blood and colostrum. Our findings reveal distinct populations of EVs in colostrum and blood from cows that can be clearly separated by density, particle concentration and protein content (BTN1A1, MFGE8). Postprandial blood samples of calves show a time-dependent increase in EVs that share morphological and protein characteristics of colostral EVs. Analysis of miRNA expression profiles by Next-Generation Sequencing gave a different picture however. Although significant postprandial expression changes could only be detected for calf EV samples, expression profiles show very limited overlap with highly expressed miRNAs in colostral EVs or colostrum in general. Conclusions Taken together our results indicate a selective uptake of membrane-associated protein cargo but not luminal miRNAs from colostral EVs into the circulation of neonatal calves.


Molecules ◽  
2019 ◽  
Vol 24 (22) ◽  
pp. 4097 ◽  
Author(s):  
Rebecca Borella ◽  
Luca Forti ◽  
Lara Gibellini ◽  
Anna De Gaetano ◽  
Sara De Biasi ◽  
...  

Triterpenoids are natural compounds synthesized by plants through cyclization of squalene, known for their weak anti-inflammatory activity. 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), and its C28 modified derivative, methyl-ester (CDDO-Me, also known as bardoxolone methyl), are two synthetic derivatives of oleanolic acid, synthesized more than 20 years ago, in an attempt to enhance the anti-inflammatory behavior of the natural compound. These molecules have been extensively investigated for their strong ability to exert antiproliferative, antiangiogenic, and antimetastatic activities, and to induce apoptosis and differentiation in cancer cells. Here, we discuss the chemical properties of natural triterpenoids, the pathways of synthesis and the biological effects of CDDO and its derivative CDDO-Me. At nanomolar doses, CDDO and CDDO-Me have been shown to protect cells and tissues from oxidative stress by increasing the transcriptional activity of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2). At doses higher than 100 nM, CDDO and CDDO-Me are able to modulate the differentiation of a variety of cell types, both tumor cell lines or primary culture cell, while at micromolar doses these compounds exert an anticancer effect in multiple manners; by inducing extrinsic or intrinsic apoptotic pathways, or autophagic cell death, by inhibiting telomerase activity, by disrupting mitochondrial functions through Lon protease inhibition, and by blocking the deubiquitylating enzyme USP7. CDDO-Me demonstrated its efficacy as anticancer drugs in different mouse models, and versus several types of cancer. Several clinical trials have been started in humans for evaluating CDDO-Me efficacy as anticancer and anti-inflammatory drug; despite promising results, significant increase in heart failure events represented an obstacle for the clinical use of CDDO-Me.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 261 ◽  
Author(s):  
Jiao Li ◽  
Elham Hosseini-Beheshti ◽  
Georges Grau ◽  
Hala Zreiqat ◽  
Christopher Little

Extracellular vesicles (EVs) are nanoscale particles secreted by almost all cell types to facilitate intercellular communication. Stem cell-derived EVs theoretically have the same biological functions as stem cells, but offer the advantages of small size, low immunogenicity, and removal of issues such as low cell survival and unpredictable long-term behaviour associated with direct cell transplantation. They have been an area of intense interest in regenerative medicine, due to the potential to harness their anti-inflammatory and pro-regenerative effects to induce healing in a wide variety of tissues. However, the potential of using stem cell-derived EVs for treating joint injury and osteoarthritis has not yet been extensively explored. The pathogenesis of osteoarthritis, with or without prior joint injury, is not well understood, and there is a longstanding unmet clinical need to develop new treatments that provide a therapeutic effect in preventing or stopping joint degeneration, rather than merely relieving the symptoms of the disease. This review summarises the current evidence relating to stem cell-derived EVs in joint injury and osteoarthritis, providing a concise discussion of their characteristics, advantages, therapeutic effects, limitations and outlook in this exciting new area.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 778
Author(s):  
Carolina Amaral Bueno Azevedo ◽  
Regiane Stafim da Cunha ◽  
Carolina Victoria Cruz Junho ◽  
Jessica Verônica da Silva ◽  
Andréa N. Moreno-Amaral ◽  
...  

Cardiorenal syndrome (CRS) is described as primary dysfunction in the heart culminating in renal injury or vice versa. CRS can be classified into five groups, and uremic toxin (UT) accumulation is observed in all types of CRS. Protein-bound uremic toxin (PBUT) accumulation is responsible for permanent damage to the renal tissue, and mainly occurs in CRS types 3 and 4, thus compromising renal function directly leading to a reduction in the glomerular filtration rate (GFR) and/or subsequent proteinuria. With this decrease in GFR, patients may need renal replacement therapy (RRT), such as peritoneal dialysis (PD). PD is a high-quality and home-based dialysis therapy for patients with end-stage renal disease (ESRD) and is based on the semi-permeable characteristics of the peritoneum. These patients are exposed to factors which may cause several modifications on the peritoneal membrane. The presence of UT may harm the peritoneum membrane, which in turn can lead to the formation of extracellular vesicles (EVs). EVs are released by almost all cell types and contain lipids, nucleic acids, metabolites, membrane proteins, and cytosolic components from their cell origin. Our research group previously demonstrated that the EVs can be related to endothelial dysfunction and are formed when UTs are in contact with the endothelial monolayer. In this scenario, this review explores the mechanisms of EV formation in CRS, uremia, the peritoneum, and as potential biomarkers in peritoneal dialysis.


2021 ◽  
Author(s):  
Elizabeth D. Frederick ◽  
Melissa A. Hausburg ◽  
Gregory W. Thomas ◽  
David Bar-Or

Abstract Background: The low molecular weight fraction of human serum albumin (LMWF5A) has immunomodulatory activity via its effects on multiple inflammatory mediators and is currently being evaluated for the treatment of hyperactive or persistent inflammatory conditions. To gain further insight into the mechanism of action (MOA) of LMWF5A, an investigation of its effects on activated immune cells was performed. Methods and Results: Peripheral blood mononuclear cells (PBMC) were treated with vehicle control or LMWF5A and stimulated with lipopolysaccharide (LPS), LPS/interferon γ, or interleukin (IL)-4/IL-13, and RNAseq was performed to determine differentially expressed genes (DEGs) within each condition. Unbiased Ingenuity Pathway Analysis (IPA) of DEGs revealed anti-inflammatory and pro-resolving activities for LMWF5A. Moreover, comparison to all IPA upstream regulators predicted that the LMWF5A MOA is opposite to pro-inflammatory regulators and significantly matches the activity of several anti-inflammatory molecules. These analyses identified the glucocorticoid dexamethasone (DEX) as the most significantly similar regulator to LMWF5A. To further explore similarities to DEX, LMWF5A DEGs were compared to two publicly available datasets of activated, DEX-treated PBMC. These comparisons showed continuity between predicted upstream regulators, affording further support to the hypothesis that LMWF5A acts in a manner like DEX. Nevertheless, not all LMWF5A-targeted DEGs showed directional regulation identical to DEX. Conclusions: This study further defines the MOA of LMWF5A and provides hypotheses for future investigations. Because of its predicted similar biological effects and known safety profile, LMWF5A could potentially be used to treat conditions that are supported for DEX with fewer or less harmful side effects.


Endocrinology ◽  
2014 ◽  
Vol 155 (11) ◽  
pp. 4178-4188 ◽  
Author(s):  
Elena Zoico ◽  
Guido Franceschetti ◽  
Salvatore Chirumbolo ◽  
Andrea P. Rossi ◽  
Gloria Mazzali ◽  
...  

Abstract Recent experimental data seem to suggest a relevant role for 1,25[OH]2cholecalciferol (1,25[OH]2D3) in adipocyte physiology and pathophysiology, with some studies showing adipogenic and pro-inflammatory properties, and others lipolytic and anti-inflammatory functions. Moreover, to our knowledge, the role of cholecalciferol (D3) in adipocytes function is still not known. Therefore, the aim of this study was to investigate in vitro the effects of 1,25[OH]2D3, as well as of D3, in 3T3-L1 adipocytes in basal and inflammatory conditions, testing the effects of different calcium concentrations in adipocytes culture medium. In 3T3-L1 adipocytes, CYP27A1 and CYP27B1 mRNA were detected in basal conditions and induced after D3 treatment. Pre-treatment of 3T3-L1 adipocytes not only with 1,25[OH]2D3, but also with D3 before inflammatory stimulation, significantly prevented the increase in gene expression and protein secretion of IL-6 and TNF-α, and significantly increased IL-10 mRNA and protein production compared with adipocytes treated only with lipopolysaccharide (LPS). Biological effects of D3 were still present after inhibition of P450 activity with ketokonazole. LPS determined a decrease in cell area compared with controls, paralleled by a significant increase in optical density (OD) of lipid droplets, whereas 1,25[OH]2D3 and D3 alone significantly increased adipocytes area and decreased OD. Pretreatment with both forms of vitamin D preserved cells from the reduction in their area observed after LPS treatment. LPS decreased more the area of cells grown in a high calcium medium than of adipocytes grown in a low calcium medium. In the presence of a high calcium medium, 1,25(OH)2D3 treatment preserved cell area, maintaining its anti-inflammatory and adipogenic properties. In conclusion our results show that D3, besides 1,25[OH]2D3, presents anti-inflammatory effects on 3T3-L1, as well as that adipocytes have the enzymatic pathways necessary to locally regulate the production of active forms of vitamin D, capable of influencing adipocyte phenotype and function.


Author(s):  
Theodore Reed ◽  
Jeffrey Schorey ◽  
Crislyn D’Souza-Schorey

Extracellular vesicles (EVs) are a heterogeneous population of membrane-bound parcels of bioactive proteins, nucleic acids, and lipids released from almost all cell types. The diversity of cargo packaged into EVs proffer the induction of an array of effects on recipient cells. EVs released from tumor cells have emerged as a vital means of communication and immune modulation within the tumor microenvironment (TME). Macrophages are an important contributor to the TME with seemingly paradoxical roles promoting either pro- or anti-tumoral immune function depending on their activated phenotypes. Here, we discuss the influence of tumor-derived extracellular vesicles on the functional plasticity of macrophages in tumor progression.


Acta Naturae ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 114-121
Author(s):  
Leyla A. Ovchinnikova ◽  
Ioanna N. Filimonova ◽  
Maria Y. Zakharova ◽  
Dmitriy S. Balabashin ◽  
Teimour K. Aliev ◽  
...  

Targeting protein therapeutics to specific cells and tissues is a major challenge in modern medicine. Improving the specificity of protein therapeutic delivery will significantly enhance efficiency in drug development. One of the promising tools for protein delivery is extracellular vesicles (EVs) that are enveloped by a complex lipid bilayer. EVs are secreted by almost all cell types and possess significant advantages: biocompatibility, stability, and the ability to penetrate the bloodbrain barrier. Overexpression of the vesicular stomatitis virus protein G (VSV-G) was shown to promote EV formation by the producer cell. We have developed an EV-based system for targeted delivery of protein cargoes to antigen-presenting cells (APCs). In this study, we show that attachment of a recombinant llama nanobody -CD206 to the N-terminus of a truncated VSV-G increases the selectivity of EV cargo delivery mainly to APCs. These results highlight the outstanding technological and biomedical potential of EV-based delivery systems for correcting the immune response in patients with autoimmune, viral, and oncological diseases.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1307 ◽  
Author(s):  
Philipp Arnold ◽  
Wiebke Lückstädt ◽  
Wenjia Li ◽  
Inga Boll ◽  
Juliane Lokau ◽  
...  

Interleukin-6 (IL-6) signaling is a crucial regulatory event important for many biological functions, such as inflammation and tissue regeneration. Accordingly, several pathological conditions are associated with dysregulated IL-6 activity, making it an attractive therapeutic target. For instance, blockade of IL-6 or its α-receptor (IL-6R) by monoclonal antibodies has been successfully used to treat rheumatoid arthritis. However, based on different signaling modes, IL-6 function varies between pro- and anti-inflammatory activity, which is critical for therapeutic intervention. So far, three modes of IL-6 signaling have been described, the classic anti-inflammatory signaling, as well as pro-inflammatory trans-signaling, and trans-presentation. The IL-6/IL-6R complex requires an additional β-receptor (gp130), which is expressed on almost all cells of the human body, to induce STAT3 (signal transducer and activator of signal transcription 3) phosphorylation and subsequent transcriptional regulation. In contrast, the IL-6R is expressed on a limited number of cells, including hepatocytes and immune cells. However, the proteolytic release of the IL-6R enables trans-signaling on cells expressing gp130 only. Here, we demonstrate a fourth possibility of IL-6 signaling that we termed joint reconstituted signaling (JRS). We show that IL-6R on extracellular vesicles (EVs) can also be transported to and fused with other cells that lack the IL-6R on their surface. Importantly, JRS via EVs induces delayed STAT3 phosphorylation compared to the well-established trans-signaling mode. EVs isolated from human serum were already shown to carry the IL-6R, and thus this new signaling mode should be considered with regard to signal intervention.


Sign in / Sign up

Export Citation Format

Share Document