scholarly journals Bifidobacterium longum subsp. infantis CECT7210 (B. infantis IM-1®) Displays In Vitro Activity against Some Intestinal Pathogens

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3259
Author(s):  
Lorena Ruiz ◽  
Ana Belén Flórez ◽  
Borja Sánchez ◽  
José Antonio Moreno-Muñoz ◽  
Maria Rodriguez-Palmero ◽  
...  

Certain non-digestible oligosaccharides (NDO) are specifically fermented by bifidobacteria along the human gastrointestinal tract, selectively favoring their growth and the production of health-promoting metabolites. In the present study, the ability of the probiotic strain Bifidobacterium longum subsp. infantis CECT7210 (herein referred to as B. infantis IM-1®) to utilize a large range of oligosaccharides, or a mixture of oligosaccharides, was investigated. The strain was able to utilize all prebiotics screened. However, galactooligosaccharides (GOS), and GOS-containing mixtures, effectively increased its growth to a higher extent than the other prebiotics. The best synbiotic combination was used to examine the antimicrobial activity against Escherichia coli, Cronobacter sakazakii, Listeria monocytogenes and Clostridium difficile in co-culture experiments. C. difficile was inhibited by the synbiotic, but it failed to inhibit E. coli. Moreover, Cr. sakazakii growth decreased during co-culture with B. infantis IM-1®. Furthermore, adhesion experiments using the intestinal cell line HT29 showed that the strain IM-1® was able to displace some pathogens from the enterocyte layer, especially Cr. sakazakii and Salmonella enterica, and prevented the adhesion of Cr. sakazakii and Shigella sonnei. In conclusion, a new synbiotic (probiotic strain B. infantis IM-1® and GOS) appears to be a potential effective supplement for maintaining infant health. However, further studies are needed to go more deeply into the mechanisms that allow B.infantis IM-1® to compete with enteropathogens.

Author(s):  
Teresa D. Rebaza-Cardenas ◽  
Kenneth Silva-Cajaleón ◽  
Carlos Sabater ◽  
Susana Delgado ◽  
Nilda D. Montes-Villanueva ◽  
...  

AbstractIn this work, two Peruvian beverages “Masato de Yuca,” typical of the Amazonian communities made from cassava (Manihot esculenta), and “Chicha de Siete Semillas,” made from different cereal, pseudo-cereal, and legume flours, were explored for the isolation of lactic acid bacteria after obtaining the permission of local authorities following Nagoya protocol. From an initial number of 33 isolates, 16 strains with different RAPD- and REP-PCR genetic profiles were obtained. In Chicha, all strains were Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), whereas in Masato, in addition to this species, Limosilactobacillus fermentum (formerly Lactobacillus fermentum), Pediococcus acidilactici, and Weissella confusa were also identified. Correlation analysis carried out with their carbohydrate fermentation patterns and enzymatic profiles allowed a clustering of the lactobacilli separated from the other genera. Finally, the 16 strains were submitted to a static in vitro digestion (INFOGEST model) that simulated the gastrointestinal transit. Besides, their ability to adhere to the human epithelial intestinal cell line HT29 was also determined. Following both procedures, the best probiotic candidate was Lac. plantarum Ch13, a robust strain able to better face the challenging conditions of the gastrointestinal tract and showing higher adhesion ability to the intestinal epithelium in comparison with the commercial probiotic strain 299v. In order to characterize its benefit for human health, this Ch13 strain will be deeply studied in further works.


2019 ◽  
Vol 7 ◽  
Author(s):  
Niall Browne ◽  
Aimee Traynor ◽  
Karina A. Horgan

AbstractMannan from yeast has been demonstrated to limit infection in animals susceptible to gastrointestinal infection, including pigs, poultry and cows, by blocking the mechanism by which gram-negative bacteria adhere to and invade the intestines. EnterotoxigenicEscherichia coli(ETEC) cause post weaning diarrhoea (PWD) which results in poor weight gain and potential death at great economic cost to the farmer. A mannan rich fraction (MRF) was assessedin vitrofor its impact on ETEC infection of HT-29 intestinal cell line. Gene expression markers for inflammation (TNFαandIL-1β) and TLR4 (TICAM-1andLY96) associated recognition of bacteria were significantly elevated following exposure toE. colialone, but not in combination with MRF compared to the control. HT-29 cells exposed to MRF alone demonstrated significantly reduced expression of immune signalling genesIRAK1,IRF7andJUNwhen compared to the control. HT-29 cell protein abundance for TNFα and TLR4 associated proteins were significantly increased in response toE. coliexposure alone while no significant change was observed for MRF treatment withE. coliinfection.E. coliadhesion to HT-29 cells was significantly decreased with addition of MRF compared toE. coliinfection alone. The action of MRF demonstrated its potential capacity to limit infection on anin vitrolevel through blocking bacterial interaction with the intestines that leads to infection as marked by a reduction in proinflammatory responses. MRF on its own demonstrated potential anti-inflammatory effects on intestinal cells with the reduction of proinflammatory responses observed.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Marisa M. Geens ◽  
Theo A. Niewold

IPEC-J2, a promisingin vitromodel system, is not well characterized especially on the transcriptional level, in contrast to human counterparts. The aim of this study was to characterize the gene expression in IPEC-J2 cells when coincubated with enterotoxigenicEscherichia coli(ETEC), nonpathogenicE. coli, andE. coliendotoxin. Apical infection of polarized IPEC-J2 monolayers caused a time-dependent decrease in transepithelial electrical resistance (TEER). Microarray analysis showed up-regulation of interleukins when IPEC-J2 were cocultured withE. colistrains this has so far never been measured in this cell line. Highest IL8 expression was found with the ETEC strain possessing the F4 fimbrium, suggesting IPEC-J2 cells to be F4 receptor positive, confirmed in a brush border membrane adhesion assay. It is concluded that the innate immune responses to pathogens and LPS makes the IPEC-J2 cell line a suitable model for research on intestinal host pathogen interaction.


Gut ◽  
2021 ◽  
pp. gutjnl-2020-322566
Author(s):  
Ane Olazagoitia-Garmendia ◽  
Linda Zhang ◽  
Paula Mera ◽  
Julie K Godbout ◽  
Maialen Sebastian-DelaCruz ◽  
...  

ObjectivesCoeliac disease (CD) is a complex autoimmune disorder that develops in genetically susceptible individuals. Dietary gluten triggers an immune response for which the only available treatment so far is a strict, lifelong gluten free diet. Human leucocyte antigen (HLA) genes and several non-HLA regions have been associated with the genetic susceptibility to CD, but their role in the pathogenesis of the disease is still essentially unknown, making it complicated to develop much needed non-dietary treatments. Here, we describe the functional involvement of a CD-associated single-nucleotide polymorphism (SNP) located in the 5’UTR of XPO1 in the inflammatory environment characteristic of the coeliac intestinal epithelium.DesignThe function of the CD-associated SNP was investigated using an intestinal cell line heterozygous for the SNP, N6-methyladenosine (m6A)-related knock-out and HLA-DQ2 mice, and human samples from patients with CD.ResultsIndividuals harbouring the risk allele had higher m6A methylation in the 5’UTR of XPO1 RNA, rendering greater XPO1 protein amounts that led to downstream nuclear factor kappa B (NFkB) activity and subsequent inflammation. Furthermore, gluten exposure increased overall m6A methylation in humans as well as in in vitro and in vivo models.ConclusionWe identify a novel m6A-XPO1-NFkB pathway that is activated in CD patients. The findings will prompt the development of new therapeutic approaches directed at m6A proteins and XPO1, a target under evaluation for the treatment of intestinal disorders.


2000 ◽  
Vol 68 (9) ◽  
pp. 5225-5233 ◽  
Author(s):  
Véronique Hofman ◽  
Vittorio Ricci ◽  
Antoine Galmiche ◽  
Patrick Brest ◽  
Patrick Auberger ◽  
...  

ABSTRACT Helicobacter pylori infection can induce polymorphonuclear leukocyte (PMNL) infiltration of the gastric mucosa, which characterizes acute chronic gastritis. The mechanisms underlying this process are poorly documented. The lack of an in vitro model has considerably impaired the study of transepithelial migration of PMNL induced by H. pylori. In the present work, we used confluent polarized monolayers of the human intestinal cell line T84 grown on permeable filters to analyze the epithelial PMNL response induced by broth culture filtrates (BCFs) and bacterial suspensions from different strains of H. pylori. We have evaluated the role of the vacuolating cytotoxin VacA and of the cagpathogenicity island (PAI) of H. pylori in PMNL migration via their effects on T84 epithelial cells. We noted no difference in the rates of PMNL transepithelial migration after epithelial preincubation with bacterial suspensions or with BCFs of VacA-negative or VacA-positive H. pylori strains. In contrast, PMNL transepithelial migration was induced after incubation of the T84 cells with cag PAI-positive and cagE-positiveH. pylori strains. Finally, PMNL migration was correlated with a basolateral secretion of interleukin-8 by T84 cells, thus creating a subepithelial chemotactic gradient for PMNL. These data provide evidence that the vacuolating cytotoxin VacA is not involved in PMNL transepithelial migration and that the cag PAI, with a pivotal role for the cagE gene, provokes a transcellular signal across T84 monolayers, inducing a subepithelial PMNL response.


2022 ◽  
pp. 399-434
Author(s):  
P. Bosi ◽  
◽  
D. Luise ◽  
P. Trevisi ◽  
◽  
...  

Intestinal pathogens causing either clinical or sub-clinical infections increase pig morbidity and (or) mortality, resulting in economic losses and wider socio-economic impacts on pig production. An optimally functioning gastrointestinal tract (GIT) is fundamental to combatting intestinal pathogen colonisation at all the stages of life. This requires successful development and maintenance of key gut functions: digestive function; the gastro-intestinal cell line barrier; gut-associated lymphoid tissue (GALT); and gut-associated microbiota. This chapter first discusses research on genes associated with pathogen resistance and porcine immune response. It then reviews risk factors associated with gut mucosa impairment as well as dietary strategies to control risk factors and improve gut functionality in preventing intestinal pathogen colonisation.


1983 ◽  
Vol 29 (12) ◽  
pp. 1731-1735 ◽  
Author(s):  
Clifford S. Mintz ◽  
Dean O. Cliver ◽  
R. H. Deibel

The attachment of Salmonella typhimurium strain PHL67342 to several mammalian tissue culture cell lines was investigated. Strain PHL67342 failed to attach in significant numbers to the Buffalo green monkey (BGM), swine testicular (ST), and HeLa cell lines. Significant attachment was observed with the Henle intestinal cell line. Log-phase cells of strain PHL67342 attached in greatest numbers to the Henle cells after 45 min of incubation at 37 °C. Attachment to the Henle cells was not affected by D-mannose or D-galactose, but was markedly inhibited by high concentrations of alpha-methyl-D-mannoside. Also, Salmonella lipopolysaccharide had no effect on the attachment of strain PHL67342 to the Henle cells. Fimbriae were not detected on the bacterial cells used in the adherence experiments. These results suggest that some bacterial factor(s) other than fimbriae and lipopolysaccharide mediate the attachment of strain PHL67342 to the Henle cells.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Zaira López ◽  
Antoni Femenia ◽  
Gabriela Núñez-Jinez ◽  
Michelle N. Salazar Zúñiga ◽  
M. Eduardo Cano ◽  
...  

Food industries typically use Aloe vera as concentrated (100× to 200×) and dried powders in their final products. These powders are obtained by extrusion of Aloe inner leaf gel (ILG) or Aloe whole leaf (WLP); the juice is filtered through diatomaceous earth and activated carbon before spray drying at temperatures below 70 °C. In another process, Aloe inner leaf gel was dried at ~80 °C and mashed to a powder rich in high molecular weight fibres and soluble polysaccharides (ILF). In contrast to ILG and WLP, the ILF sample was cytotoxic for the human intestinal cell line Caco-2 (CC50 = 1 g/l), even at concentrations below the recommended dose for human consumption. At lower concentrations (250 mg/l) with LPS challenged macrophage-like THP-1 cells decreased by 40% the release of the anti-inflammatory cytokine IL-10, whereas the release of the proinflammatory cytokine IL-1β increased by 35% (compared to untreated but challenged macrophage-like THP-1 cells). Unexpectedly, under the same conditions, the less cytotoxic ILG and WLP, both samples with a lower fibre content, significantly increased (up to 2.4 times) the release of IL-10, while the concentration of IL-1β remained unaltered and of TNFα decreased by 35%. Even more interesting is that a treatment of the ILF sample with activated carbon reduced its cytotoxicity and increased the IL-10 release (3.1 times). Based on these results, we suggest applying an activated carbon treatment on Aloe-starting products, which have high fibre content and have received high temperature treatment, in order to reduce their cytotoxicity and improve their immunomodulatory properties.


2003 ◽  
Vol 71 (4) ◽  
pp. 1774-1783 ◽  
Author(s):  
Frederic Betis ◽  
Patrick Brest ◽  
Véronique Hofman ◽  
Julie Guignot ◽  
Imad Kansau ◽  
...  

ABSTRACT Ulcerative colitis and Crohn's disease are inflammatory bowel diseases thought to involve strains of Escherichia coli. We report here that two wild-type Afa/Dr diffusely adhering E. coli (DAEC) strains, C1845 and IH11128, which harbor the fimbrial F1845 adhesin and the Dr hemagglutinin, respectively, and the E. coli laboratory strain HB101, transformed with the pSSS1 plasmid to produce Afa/Dr F1845 adhesin, all induced interleukin-8 (IL-8) production and transepithelial migration of polymorphonuclear leukocytes (PMNL) in polarized monolayers of the human intestinal cell line T84 grown on semipermeable filters. We observed that after PMNL migration, expression of decay-accelerating factor (DAF, or CD55), the brush border-associated receptor for Afa/Dr adhesins, was strongly enhanced, increasing the adhesion of Afa/Dr DAEC bacteria. When examining the mechanism by which DAF expression was enhanced, we observed that the PMNL transepithelial migration induced epithelial synthesis of tumor necrosis factor alpha and IL-1β, which in turn promoted the upregulation of DAF.


2014 ◽  
Vol 910 ◽  
pp. 137-140
Author(s):  
Chao Hui Xue ◽  
Lan Wei Zhang ◽  
Hong Bo Li ◽  
Shu Mei Wang

Three Lactobacillus strains were screened on the basis of probiotic characteristics (i.e., resistance to low pH and bile salts, adhesion to the human gastrointestinal tract, inhibition of pathogenic strains). They further exhibited producing antimicrobial activities of non-acid molecule (s). In addition, antibacterial peptides were isolated and purified from the cell-free culture supernatants of these three probiotic strains. Based on TricineSDSPAGE, the antimicrobial peptide was approximately 10 kDa in size. After analyzing the sequence of the 16SrDNA regions of these three strains, they were identified asLactobacillus crispatus Lactobacillus rhamnosus and Lactobacillus rhamnosua GG.Using an in vitro system simulating gastric transit, our findings indicated that the three probiotic strains had the ability to tolerate gastroenteric environment and the adhesive capacity to HT-29 cells. It was demonstrated that the probiotic strains inhibited subsequent adhesion of E. coli to the HT-29 cell. Among the selected strains,L. rhamnosusF1333 showed a high probiotic potential and could be used in health-promoting food products.


Sign in / Sign up

Export Citation Format

Share Document