scholarly journals Time-Restricted Feeding Restores Obesity-Induced Alteration in Adipose Tissue Immune Cell Phenotype

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3780
Author(s):  
Youngyoon Lee ◽  
Yelim Kim ◽  
Minam Lee ◽  
Dayong Wu ◽  
Munkyong Pae

Studies suggest that time-restricted feeding (TRF) may prevent obesity and its commodities. At present, little is known about how TRF impacts immune cells, and whether such an effect is linked to altered metabolic parameters under condition of a high-fat diet (HFD)-induced obesity. To address these issues, we conducted a study in which we determined whether TRF has therapeutic efficacy against weight gain, adiposity, as well as associated immune cell disturbance found in obese mice. Six-week-old male C57BL/6 mice were fed a low-fat diet (LFD) or HFD ad libitum for six weeks, after which time a subgroup of HFD mice was switched to the 10 h TRF paradigm (HFD-TRF) for additional eight weeks. We found that TRF intervention reduced HFD-induced weight gain. Even with comparable fat mass and mean adipocyte area, the HFD-TRF group had lower mRNA levels of proinflammatory cytokine Tnfα and chemokine Ccl8, along with reduced numbers of adipose tissue macrophages (ATM), CD11c+ ATM, and CD8+ T cell compared to the HFD group, while maintaining CD8+ to CD4+ ratio at levels similar to those in the LFD group. Furthermore, TRF intervention was effective in improving glucose tolerance and reducing HOMA-IR. Taken together, our findings suggest that TRF restores the obesity-induced alteration in immune cell composition, and this effect may in part contribute to health benefits (including insulin sensitivity) of practicing TRF.

Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 604 ◽  
Author(s):  
Jung Eun Park ◽  
Suk-Heung Oh ◽  
Youn-Soo Cha

Our previous study reported that lactic acid bacteria (L. brevis OPK-3) isolated from kimchi ameliorated intracellular lipid accumulation in 3T3-L1 adipocyte. The current study explored potential roles of L. brevis OPK-3 (KLAB) on preventing body weight gain and its effect on the inflammatory response of adipose tissue. Male C57BL/6 mice (n = 10) were divided into four groups: normal diet with distilled water (NDC), high-fat diet with distilled water (HDC), high-fat diet with L-ornithine (OTC) or high-fat diet with KLAB. The KLAB supplement resulted in significantly lower body weight, lower epididymal fat tissue mass, and lower serum and hepatic TG levels than the HDC. KLAB supplementation improved serum cytokines, and real-time polymerase chain reaction (PCR) analysis showed significantly lower inflammatory cytokine mRNA levels in epididymal adipose tissue. These results suggest that the administration of KLAB inhibits the induction of inflammation in adipose tissue along with the inhibition of weight gain. Therefore, this study demonstrates the therapeutic and beneficial value of this strain produced during the fermentation of kimchi.


2007 ◽  
Vol 292 (1) ◽  
pp. E262-E271 ◽  
Author(s):  
Suzan Lambin ◽  
Rita van Bree ◽  
Silvia Caluwaerts ◽  
Lisbeth Vercruysse ◽  
Ignace Vergote ◽  
...  

Gravidas with obesity and diabetes (“diabesity”) may transmit this syndrome to their children through genetic and nongenetic mechanisms. Here, we used the Lepr db/+ diabese mouse to examine the magnitude of these transmission modes, focusing on adipose tissue (AT). We compared the following six groups: wild-type (+/+) offspring from +/+ or db/+ dams (different early life environment) and db/+ offspring from db/+ dams, fed a standard or high-fat diet. Weight gain (0–8 wk) was higher in +/+ offspring from db/+ vs. +/+ mothers, and even higher in db/+ vs. +/+ offspring from db/+ mothers. In addition, we observed a stepwise increase in AT and adipocyte size in +/+ from +/+ mice, +/+ from db/+ mice, and db/+ mice at 8 wk. Differences in weight and adiposity between +/+ offspring from db/+ vs. +/+ dams were more pronounced in males than in females. Leptin and apelin mRNA levels in white and brown AT were higher in +/+ offspring from db/+ vs. +/+ dams; however, leptin, apelin, and tumor necrosis factor-α expression were boosted more robustly in db/+ offspring. The high-fat diet amplified AT differences between db/+ vs. +/+ offspring from db/+ dams, but not between +/+ offspring from db/+ vs. +/+ dams. Moreover, db/+ but not +/+ offspring from db/+ mothers were insulin-resistant and hyperinsulinemic after a glucose challenge. In conclusion, the genetic transmission of the diabesity phenotype clearly prevailed, but the early-life diabesity environment had discernible effects on postnatal weight gain as well as on adipocyte size and adipokine expression at a postpubertal age.


2018 ◽  
Vol 120 (4) ◽  
pp. 385-392 ◽  
Author(s):  
Yuanyuan Lu ◽  
Chaonan Fan ◽  
Aimin Liang ◽  
Xiuqin Fan ◽  
Rui Wang ◽  
...  

AbstractSpecific adipokines, such as adiponectin and resistin, are secreted from adipose tissue and are associated with the development of obesity. Supplementation of dietary SCFA can prevent and reverse high-fat-diet (HFD)-induced obesity. However, it is not clear whether SCFA ameliorate abnormal expression of adiponectin and resistin in the obese state. The aim of this study was to investigate the effects of SCFA on adiponectin and resistin’s expressions in diet-induced obese mice, as well as the potential mechanisms associated with DNA methylation. C57BL/6J male mice were fed for 16 weeks with five types of HFD (34·9 % fat by wt., 60 % kJ) – a control HFD and four HFD with acetate (HFD-A), propionate (HFD-P), butyrate (HFD-B) and their admixture (HFD-SCFA). Meanwhile, a low-fat diet (4·3 % fat by wt., 10 % kJ) was used as the control group. The reduced mRNA levels of adiponectin and resistin in the adipose tissue of the HFD-fed mice were significantly reversed by dietary supplementation of acetate, propionate, butyrate or their admixture to the HFD. Moreover, the expressional changes of adiponectin and resistin induced by SCFA were associated with alterations in DNA methylation at their promoters, which was mediated by reducing the expressions of enzyme-catalysed DNA methyltransferase (DNMT1, 3a, 3b) and the methyl-CpG-binding domain protein 2 (MBD2) and suppressing the binding of these enzymes to the promoters of adiponectin and resistin. Our results indicate that SCFA may correct aberrant expressions of adiponectin and resistin in obesity by epigenetic regulation.


2018 ◽  
Vol 43 (7) ◽  
pp. 751-754 ◽  
Author(s):  
Alison C. Ludzki ◽  
Mark W. Pataky ◽  
Gregory D. Cartee ◽  
Jeffrey F. Horowitz

The aim of this study was to determine the effects of acute exercise on key factors regulating angiogenesis in adipose tissue. Adipose tissue Vegf-a messenger RNA expression was upregulated immediately after acute exercise (p < 0.05) in rats consuming a high-fat diet, but was lower after exercise (p < 0.05) in rats consuming a low-fat diet. Our working hypothesis is that acute exercise augments angiogenic signaling under conditions when adipose tissue is expanding, and with repeated exercise sessions these signals can accrue to enhance vascularization.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maki Murakoshi ◽  
Tomohito Gohda ◽  
Eri Adachi ◽  
Saki Ichikawa ◽  
Shinji Hagiwara ◽  
...  

AbstractProgranulin (PGRN) has been reported to bind tumor necrosis factor (TNF) receptor and to inhibit TNFα signaling. We evaluated the effect of augmentation of TNFα signaling by PGRN deficiency on the progression of kidney injury. Eight-week-old PGRN knockout (KO) and wild-type (WT) mice were fed a standard diet or high-fat diet (HFD) for 12 weeks. Albuminuria, markers of tubular damage, and renal mRNA levels of inflammatory cytokines were higher in HFD-fed KO (KO-HFD) mice than in HFD-fed WT (WT-HFD) mice. Body weight, vacuolization in proximal tubules, and systemic and adipose tissue inflammatory markers were lower in the KO-HFD mice than in the WT-HFD mice. The renal megalin expression was lower in the KO mice than in the WT mice regardless of the diet type. The megalin expression was also reduced in mouse proximal tubule epithelial cells stimulated with TNFα and in those with PGRN knockdown by small interfering RNA in vitro. PGRN deficiency was associated with both exacerbated renal inflammation and decreased systemic inflammation, including that in the adipose tissue of mice with HFD-induced obesity. Improved tubular vacuolization in the KO-HFD mice might partially be explained by the decreased expression of megalin in proximal tubules.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Jun Muratsu ◽  
Yoshiaki Taniyama ◽  
Fumihiro Sanada ◽  
Atsuyuki Morishima ◽  
Katsuhiko Sakaguchi ◽  
...  

Abstract Background and Aims Obesity and its associated chronic inflammation in adipose tissue initiate insulin resistance, which is related to several pathologies including hypertension and atherosclerosis. Previous reports demonstrated that circulating hepatocyte growth factor (HGF) level was associated with obesity and type 2 diabetes. However, its precise role in obesity and related-pathology is unclear. Method In this experiment, cardiac-specific over-expression of human HGF in mice (HGF-Tg mice) which showed 4-5 times higher serum HGF levels than wild-type mice were used. We chose cardiac specific HGF overexpression, as other strain of HGF transgenic mice such as liver and kidney specific HGF overexpression mice develop cancer and cystic diseases, which are rare in the heart. In the present study, using HGF-Tg mice and anti-HGF neutralizing antibody (HGF-Ab), we explored the role of HGF in obese and insulin resistance induced by high fat diet (HFD) for 14 weeks (200 or 400ug/week). Results With normal chow diet (ND), there were no significant changes in body weight between WT and HGF-Tg mice. While body weight in wild-type mice fed with HFD for 14 weeks was significantly increased accompanied with insulin resistance, HGF-Tg mice prevented body weight gain and insulin resistance. Insulin resistance in obesity arises from the combination of altered functions of insulin target cells (e.g., liver, skeletal muscle, and adipose tissue) and the accumulation of macrophages that secrete pro-inflammatory mediators in adipose tissue. The accumulation of macrophages and elevated levels of inflammatory mediators in adipose tissue were significantly inhibited in HGF-Tg mice as compared to wild-type mice. In the gWAT, the mRNA levels of the mature macrophage marker F4/80, the chemoattractants, MCP-1 and CXCL2, and the inflammatory cytokines, such as TNF-α and iNOS, were significantly increased in WT mice fed with HFD. However, these levels were markedly reduced in HGF-Tg mice fed with HFD. Additionally, activation of Akt by insulin administration was significantly reduced in the gWAT SM, and liver by HFD; however, this activation was restored in HGF-Tg mice. Moreover, insulin-induced Akt signaling was decreased in HGF-Ab groups as compared to saline group under HFD condition. Importantly, HFD significantly increased the level of HGF mRNA by approximately 2 fold in gWAT, SM, and liver without changing cMet expression. All together, these data indicate that the HGF as one of the systemic gWAT, SM, and liver-derived growth factor plays a role in compensatory mechanism against insulin-resistance through the at least anti-inflammatory effect in adipose tissue. The HFD-induced obesity in wild-type mice treated with HGF-neutralizing antibody showed an exacerbated response to the glucose tolerance test. Conclusion HGF suppresses inflammation in adipose tissue induced by a high-fat diet, and as a result improves systemic insulin resistance. These gain-of-function and loss-of-function studies demonstrated that the elevated HGF level induced by HFD have protective role against obesity and insulin resistance.


1997 ◽  
Vol 321 (2) ◽  
pp. 451-456 ◽  
Author(s):  
Véronique ROUSSEAU ◽  
Dominique J. BECKER ◽  
Lumbe N. ONGEMBA ◽  
Jacques RAHIER ◽  
Jean-Claude HENQUIN ◽  
...  

The ob gene encodes leptin, a hormone which induces satiety and increases energy expenditure. The peroxisome proliferator-activated receptor γ2 isoform (PPARγ2) gene encodes a transcription factor which controls adipocyte differentiation and expression of fat-specific genes. We have studied the regulation of these two genes in white adipose tissue (WAT) during the sucklingŐweaning transition. Suckling rats ingest a high-fat diet (milk). Fat-pad weight barely varied during the last week of suckling. ob mRNA levels, which were very low in 15-day-old rats, rose ∼ 6-fold until weaning at 21 days. When the rats were weaned on to a standard (high-carbohydrate) laboratory chow, epididymal WAT enlarged ∼ 7-fold, and ob mRNA kept increasing progressively and doubled between 21 and 30 days. This evolution contrasted with that of fatty acid synthase (FAS) mRNA, which increased sharply, but only after weaning. To distinguish between the influence of developmental and nutritional factors on ob expression, a group of rats was weaned on to a high-fat diet. This prevented the rise in glycaemia and insulinaemia and the decrease in plasma non-esterified fatty acids which otherwise occurred at weaning. This also resulted in a slight (10Ő15%) decrease in food intake and body weight gain. Under this high-fat diet, the rise of ob mRNA in WAT was augmented (3.7-fold in 30- versus 21-day-old pups), whereas the normal rise in FAS mRNA levels was attenuated. Fat-pad weights and adipocyte cell size and number were roughly similar in high-carbohydrate- and high-fat-weaned pups. mRNA levels of PPARγ2, like those of ob, were low in the WAT of 15-day-old suckling pups, doubled at 21 days, and reached a maximum as soon as 23 days. This evolution further differed from that of ob mRNA in not being influenced by diet composition. In conclusion, ob expression markedly increases during the sucklingŐweaning transition, and this effect is accentuated by a high-fat diet. Qualitative nutritional changes in ob mRNA were correlated with neither acute changes in adipose-tissue mass, nor cell size/number, nor variations in insulinaemia. PPARγ2 also increased during suckling, but rapidly reached a plateau after weaning and no longer changed thereafter. Unlike ob, PPARγ2 was not influenced by the diet composition.


Sign in / Sign up

Export Citation Format

Share Document