scholarly journals Non-Penicillin-Susceptible Streptococcus suis Isolated from Humans

Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1178
Author(s):  
Nichari Bamphensin ◽  
Peechanika Chopjitt ◽  
Rujirat Hatrongjit ◽  
Parichart Boueroy ◽  
Nahuel Fittipaldi ◽  
...  

Streptococcus suis is a pathogen that causes invasive infections in humans and pigs. In this study, 448 S. suis isolates recovered from human infections in Thailand were characterized with regard to their antimicrobial susceptibility and antimicrobial resistance genes, including, for non-penicillin-susceptible isolates, sequence analyses of five genes encoding penicillin-binding proteins (pbp1a, pbp1b, pbp2a, pbp2b, and pbp2x). All 448 isolates were susceptible to cefepime and ceftriaxone, whereas 99.6%, 91.7%, and 72.9% of the isolates were susceptible to levofloxacin, penicillin, and chloramphenicol, respectively. Almost all isolates were resistant to tetracycline (98.2%), clindamycin (94%), erythromycin (92.4%), and azithromycin (82.6%). Genes tet(O) and ermB were the predominant resistance genes detected among macrolide- and tetracycline-resistant isolates. A total of 37 out of 448 isolates (8.2%) showed intermediately resistance to penicillin. Most of these isolates (59.5%) belonged to serotype 2-ST233. Comparison of the predicted translated sequences of five PBP proteins of a penicillin-susceptible isolate (strain P1/7) to the respective PBP sequences of ten non-penicillin-susceptible isolates revealed multiple amino acid substitutions. Isolates of CC221/234 showed highly variable amino acid substitutions in all PBP proteins. An ST104 isolate had a higher number of amino acid substitutions in PBP2X. Isolates belonging to CC233/379 had numerous substitutions in PBP2B and PBP2X. ST25 isolates exhibited fewer amino acid substitutions than isolates of other STs in all five PBPs. The antimicrobial resistance of S. suis is increasing worldwide; therefore, restrictions on antimicrobial use, continuous control, and the surveillance of this bacterium throughout the pork supply chain are crucial for ensuring public health and must be a priority concern.

2020 ◽  
Author(s):  
Robert Pieper ◽  
Temesgen Dadi ◽  
Lukasz Grzeskowiak ◽  
Laura Pieper ◽  
Britta Siegmund ◽  
...  

Abstract Background: Clostridium difficile infection (CDI) is an increasing zoonotic health threat and has also been documented as a cause of enteritis outbreaks in neonatal pigs. Furthermore, CDI in neonatal piglets cause changes in microbial gut colonization. We hypothesized that an imbalanced microbial colonization in piglets with CDI could be associated with an altered abundance of antimicrobial resistance genes. Results: We analyzed fecal metagenomic data of lactating sows (S), their piglets during suckling (SP), the same piglets two weeks after weaning (WP), 5-day old artificially reared and formula-fed siblings (FP) and FP infected with C. difficile (FP-CD) for microbiota composition and antimicrobial resistance gene abundance. FP and FP-CD piglets had an immature-type microbiota and increased abundance of antimicrobial resistance genes. A co-occurrence of genes encoding for resistance against aminoglycosides (e.g. aph(3”)-lb, aph(6)-ld, ant(2”)-la), β-lactams (blaCTX-M, blaTEM), fluoroquinolones (pat(A) macrolides (mph(A)), sulfonamides (sul1, sul2), polypeptides (e.g. pmrB, pmrC, arnA, bac(A)) and tetracyclines (e.g. tet(A-D),) was observed. Conclusion: Increased abundance of antimicrobial resistance genes in formula feeding and concomitant CDI may be associated with therapeutic resistance later in life and warrant further studies.


2021 ◽  
Author(s):  
Nattinee Kittiwan ◽  
Jessica K Calland ◽  
Evangelos Mourkas ◽  
Matthew D Hitchings ◽  
Susan Murray ◽  
...  

Streptococcus suis is a leading cause of bacterial meningitis in SE Asia, with frequent zoonotic transfer to humans associated with close contact with pigs. A small number of invasive lineages are responsible for endemic infection in the swine industry causing considerable global economic losses. A lack of surveillance and a rising trend in clinical treatment failure has raised concerns of growing antimicrobial resistance (AMR) among invasive S. suis. The source-sink dynamics between healthy and disease isolates is poorly understood and, in this study, we sample and sequence a collection of isolates predominantly from healthy pigs in Chiang Mai province, Northern Thailand. Pangenome comparisons with a selection of invasive serotype 2 isolates identified increased genetic diversity and more frequent AMR carriage in isolates from healthy pigs. Multiple antimicrobial resistance genes were identified conferring resistance to aminoglycosides, lincosamides, tetracycline and macrolides. All isolates were non-susceptinle to three or more different antimicrobial classes, and 75% of non-serotype 2 isolates were non-susceptible to 6 or more classes (compared to 37.5% of serotype 2 isolates). Antimicrobial resistance genes were found on integrative and conjugative elements (ICE) previously observed in other species, suggesting mobile gene pool which can be accessed by invasive disease isolates.


2021 ◽  
Vol 9 (4) ◽  
pp. 707
Author(s):  
J. Christopher Noone ◽  
Fabienne Antunes Ferreira ◽  
Hege Vangstein Aamot

Our culture-independent nanopore shotgun metagenomic sequencing protocol on biopsies has the potential for same-day diagnostics of orthopaedic implant-associated infections (OIAI). As OIAI are frequently caused by Staphylococcus aureus, we included S. aureus genotyping and virulence gene detection to exploit the protocol to its fullest. The aim was to evaluate S. aureus genotyping, virulence and antimicrobial resistance genes detection using the shotgun metagenomic sequencing protocol. This proof of concept study included six patients with S. aureus-associated OIAI at Akershus University Hospital, Norway. Five tissue biopsies from each patient were divided in two: (1) conventional microbiological diagnostics and genotyping, and whole genome sequencing (WGS) of S. aureus isolates; (2) shotgun metagenomic sequencing of DNA from the biopsies. Consensus sequences were analysed using spaTyper, MLST, VirulenceFinder, and ResFinder from the Center for Genomic Epidemiology (CGE). MLST was also compared using krocus. All spa-types, one CGE and four krocus MLST results matched Sanger sequencing results. Virulence gene detection matched between WGS and shotgun metagenomic sequencing. ResFinder results corresponded to resistance phenotype. S. aureus spa-typing, and identification of virulence and antimicrobial resistance genes are possible using our shotgun metagenomics protocol. MLST requires further optimization. The protocol has potential application to other species and infection types.


2021 ◽  
Vol 194 ◽  
pp. 110730
Author(s):  
Olivia Ginn ◽  
Dennis Nichols ◽  
Lucas Rocha-Melogno ◽  
Aaron Bivins ◽  
David Berendes ◽  
...  

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S233-S234
Author(s):  
Corrin Graue ◽  
Bryan H Schmitt ◽  
Amy Waggoner ◽  
Frederic Laurent ◽  
Lelia Abad ◽  
...  

Abstract Background Bone and Joint Infections (BJIs) present with non-specific symptoms that may include pain, swelling, and fever and are associated with high morbidity and significant risk of mortality. BJIs can be caused by a variety of bacteria and fungi, including anaerobes and microorganisms that can be challenging to culture or identify by traditional microbiological methods. Clinicians primarily rely on culture to identify the pathogen(s) responsible for infection. The BioFire® Bone and Joint Infection (BJI) Panel (BioFire Diagnostics, Salt Lake City, UT) is designed to detect 15 gram-positive bacteria (including seven anaerobes), 14 gram-negative bacteria (including one anaerobe), two yeast, and eight antimicrobial resistance (AMR) genes from synovial fluid specimens in about an hour. The objective of this study was to evaluate the performance of an Investigational Use Only (IUO) version of the BioFire BJI Panel compared to various reference methods. Methods Remnant synovial fluid specimens, which were collected for routine clinical care at 13 study sites in the US and Europe, underwent testing using an IUO version of the BioFire BJI Panel. Performance of this test was determined by comparison to Standard of Care (SoC) consisting of bacterial culture performed at each study site according to their routine procedures. Results A total of 1544 synovial fluid specimens were collected and tested with the BioFire BJI Panel. The majority of specimens were from knee joints (77.9%) and arthrocentesis (79.4%) was the most common collection method. Compared to SoC culture, overall sensitivity was 90.2% and specificity was 99.8%. The BioFire BJI Panel yielded a total of 268 Detected results, whereas SoC yielded a total of 215 positive results for on-panel analytes. Conclusion The BioFire BJI Panel is a sensitive, specific, and robust test for rapid detection of a wide range of analytes in synovial fluid specimens. The number of microorganisms and resistance genes included in the BioFire BJI Panel, together with a reduced time-to-result and increased diagnostic yield compared to culture, is expected to aid in the timely diagnosis and appropriate management of BJIs. Disclosures Benjamin von Bredow, PhD, BioFire (Grant/Research Support) Jennifer Dien Bard, PhD, BioFire Diagnostic (Consultant, Scientific Research Study Investigator) Bart Kensinger, PhD, BioFire Diagnostics (Employee) Benedicte Pons, PhD, bioMerieux SA (Employee) Corinne Jay, PhD, bioMerieux SA (Employee)


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Quan Li ◽  
Jian Yin ◽  
Zheng Li ◽  
Zewei Li ◽  
Yuanzhao Du ◽  
...  

AbstractSalmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdelazeem M. Algammal ◽  
Hany R. Hashem ◽  
Khyreyah J. Alfifi ◽  
Helal F. Hetta ◽  
Norhan S. Sheraba ◽  
...  

AbstractProteus mirabilis is a common opportunistic pathogen causing severe illness in humans and animals. To determine the prevalence, antibiogram, biofilm-formation, screening of virulence, and antimicrobial resistance genes in P. mirabilis isolates from ducks; 240 samples were obtained from apparently healthy and diseased ducks from private farms in Port-Said Province, Egypt. The collected samples were examined bacteriologically, and then the recovered isolates were tested for atpD gene sequencing, antimicrobial susceptibility, biofilm-formation, PCR detection of virulence, and antimicrobial resistance genes. The prevalence of P. mirabilis in the examined samples was 14.6% (35/240). The identification of the recovered isolates was confirmed by the atpD gene sequencing, where the tested isolates shared a common ancestor. Besides, 94.3% of P. mirabilis isolates were biofilm producers. The recovered isolates were resistant to penicillins, sulfonamides, β-Lactam-β-lactamase-inhibitor-combinations, tetracyclines, cephalosporins, macrolides, and quinolones. Using PCR, the retrieved strains harbored atpD, ureC, rsbA, and zapA virulence genes with a prevalence of 100%, 100%, 94.3%, and 91.4%, respectively. Moreover, 31.4% (11/35) of the recovered strains were XDR to 8 antimicrobial classes that harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Besides, 22.8% (8/35) of the tested strains were MDR to 3 antimicrobial classes and possessed blaTEM, tetA, and sul1genes. Furthermore, 17.1% (6/35) of the tested strains were MDR to 7 antimicrobial classes and harbored blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Alarmingly, three strains were carbapenem-resistant that exhibited PDR to all the tested 10 antimicrobial classes and shared blaTEM, blaOXA-1, blaCTX-M, tetA, and sul1 genes. Of them, two strains harbored the blaNDM-1 gene, and one strain carried the blaKPC gene. In brief, to the best of our knowledge, this is the first study demonstrating the emergence of XDR and MDR-P.mirabilis in ducks. Norfloxacin exhibited promising antibacterial activity against the recovered XDR and MDR-P. mirabilis. The emergence of PDR, XDR, and MDR-strains constitutes a threat alarm that indicates the complicated treatment of the infections caused by these superbugs.


Sign in / Sign up

Export Citation Format

Share Document