scholarly journals Chitosan from Crabs (Scylla serrata) Represses Hyperlipidemia-Induced Hepato-Renal Dysfunctions in Rats:Modulation of CD43 and p53 Expression

2021 ◽  
Vol 28 (2) ◽  
pp. 224-237
Author(s):  
Regina Ngozi Ugbaja ◽  
Kunle Ogungbemi ◽  
Adewale Segun James ◽  
Ayodele Peter Folorunsho ◽  
Samuel Olanrewaju Abolade ◽  
...  

Hepato-renal dysfunctions associated with hyperlipidemia necessitates a continuous search for natural remedies. This study thus evaluated the effect of dietary chitosan on diet-induced hyperlipidemia in rats. A total of 30 male Wistar rats (90 ± 10) g were randomly allotted into six (6) groups (n = 5): Normal diet, High-fat diet (HFD), and Normal diet + 5% chitosan. The three other groups received HFD, supplemented with 1%, 3%, and 5% of chitosan. The feeding lasted for 6 weeks, after which the rats were sacrificed. The liver and kidneys were harvested for analyses. He-patic alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activity, and renal biomarkers (ALT, AST, urea, and creatinine) were assayed spectrophoto-metrically. Additionally, expression of hepatic and renal CD43 and p53 was estimated immuno-histochemically. The HFD group had elevated bodyweight compared to normal which was reversed in the chitosan-supplemented groups. Hyperlipidemia caused a significant (p < 0.05) decrease in the hepatic (AST, ALT, and ALP) and renal (AST and ALT) activities, while renal urea and creatinine increased. Furthermore, the HFD group showed an elevated level of hepatic and renal CD43 while p53 expression decreased. However, groups supplemented with chitosan showed improved hepatic and renal biomarkers, as well as corrected the aberrations in the expressions of p53 and CD43. Con-clusively, dietary chitosan inclusion in the diet (between 3% and 5%) could effectively improve kid-ney and liver functionality via abatement of inflammatory responses.


Author(s):  
Regina Ngozi Ugbaja ◽  
Kunle Ogungbemi ◽  
Adewale Segun James ◽  
Peter Folorunsho Ayodele ◽  
Olanrewaju Samuel Abolade ◽  
...  

Hepato-renal dysfunctions associated with hyperlipidemia necessitates continuous search for natural remedies. This study thus, evaluated the effect of dietary chitosan on diet-induced hyperlipidemic rats. Thirty male Wistar rats (90 ± 5.2) g were randomly allotted into six (6) groups (n=5): Normal diet, High-fat diet (HFD), Normal diet + 5% chitosan. The three other groups received HFD, supplemented with 1%-, 3%-, and 5% of chitosan. The feeding lasted for 8 weeks, after which the rats were sacrificed. The liver and kidneys were harvested for Analyses. Hepatic alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activity, and renal biomarkers (ALT, AST, urea, and creatinine) were assayed spectrophotometrically. Additionally, expression of hepatic and renal CD43 and p53 was estimated immunohistochemically. Hyperlipidemia caused a significant (p&lt;0.05) decrease in the hepatic (AST, ALT, and ALP) and renal (AST and ALT) activities, while renal urea and creatinine increased. Furthermore, the HFD group showed an elevated level of hepatic and renal CD43 while p53 expression decreased. However, groups supplemented with chitosan showed improved hepatic and renal biomarkers, as well as corrected the aberrations in the expressions of p53 and CD43. Conclusively, dietary chitosan could effectively improve kidney and liver functionality via abatement of inflammatory responses.



2021 ◽  
Vol 12 ◽  
Author(s):  
Fang Li ◽  
Qian Li ◽  
Yu Zhang ◽  
Xianrong Zhou ◽  
Ruokun Yi ◽  
...  

Xylooligosaccharide (XOS) is a source of prebiotics with multiple biological activities. The present study aimed to investigate the effects of XOS on mice fed a high-fat diet. Mice were fed either a normal diet or a high-fat diet supplemented without or with XOS (250 and 500 mg/kg), respectively, for 12 weeks. The results showed that the XOS inhibited mouse weight gain, decreased the epididymal adipose index, and improved the blood lipid levels, including triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels. Moreover, XOS reduced the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated the damage to the liver caused by the high-fat diet. XOS also reduced hyperlipidemia-associated inflammatory responses. Additionally, quantitative real-time polymerase chain reaction results showed that XOS intervention activated the AMP-activated protein kinase (AMPK) pathway to regulate the fat synthesis, decomposition, and β oxidation; upregulated the mRNA expression levels of carnitine palmitoyl transferase 1 (CPT-1), peroxisome proliferator–activated receptors α (PPAR-α), and cholesterol 7-alpha hydroxylase (CYP7A1); and downregulated the mRNA expression levels of acetyl-CoA carboxylase (ACC), CCAAT/enhancer-binding protein alpha (C/EBPα), and lipoprotein lipase (LPL). On the other hand, XOS enhanced the mRNA expression levels of zonula occludens-1 (ZO-1), occludin, and claudin-1 in the small intestine; increased the strength of the intestinal barrier; and optimized the composition of the intestinal microbiota. Therefore, it was concluded that XOS regulated the intestinal barrier, changed the intestinal microecology, and played an important role in preventing hyperlipidemia through the unique anatomical advantages of the gut–liver axis.



2013 ◽  
Vol 57 (8) ◽  
pp. 642-649 ◽  
Author(s):  
Thiago Bruder-Nascimento ◽  
Dijon Henrique Salomé Campos ◽  
Carlos Alves ◽  
Samuel Thomaz ◽  
Antônio Carlos Cicogna ◽  
...  

OBJECTIVE: The aim of this study was assess the role of chronic stress on the metabolic and nutritional profile of rats exposed to a high-fat diet. MATERIALS AND METHODS: Thirty-day-old male Wistar rats (70-100 g) were distributed into four groups: normal-diet (NC), chronic stress (St), high-fat diet (HD), and chronic stress/high-fat diet (HD/St). Stress consisted at immobilization during 15 weeks, 5 times per week, 1h per day; and exposure to the high-fat diet lasted 15 weeks. Nutritional and metabolic parameters were assessed. The level of significance was 5%. RESULTS: The HD group had final body weight, total fat, as well as insulin and leptin increased, and they were insulin resistant. The St and HD/St had arterial hypertension and increased levels of corticosterone. Stress blocked the effects of the high-fat diet. CONCLUSION: Chronic stress prevented the appearance of obesity. Our results help to clarify the mechanisms involved in metabolic and nutritional dysfunction, and contribute to clinical cases linked to stress and high-fat diet.



Author(s):  
Kunle Ogungbemi ◽  
Regina N. Ugbaja ◽  
Funmilayo F. Ilesanmi ◽  
Abolanle O. Ilori ◽  
Toluwalope A. Odeniyi ◽  
...  

<p class="abstract"><strong>Background:</strong> This study was carried out to determine the growth performance of rats fed graded levels of chitosan supplemented High fat diet.  </p><p class="abstract"><strong>Methods:</strong> Thirty male wistar rats weighing between 70 g and 90 g were purchased and randomly allotted into three (3) treatment groups with graded levels of chitosan in High fat diet (1%, 3% and 5%) and three (3) control groups namely: normal diet, High fat diet and normal diet +5% chitosan. The feed intakes as well as weight change of the experimental rats were monitored for six (6) weeks.</p><p class="abstract"><strong>Results:</strong> The results obtained showed that the highest level of feed intake and feed efficiency were recorded for animals in group fed 5% level of chitosan supplementation when compared to other treatment groups. Similar result was observed for the weight change (as there was significant reduction in the weight gain with increase chitosan supplementation in HFD) which can be attributed to the efficient utilization of feed consumption.</p><p class="abstract"><strong>Conclusions:</strong> It can be concluded that dietary chitosan prevents excess weight gain in hyperlipidemia and improves the overall nutritional attributes of the experimental diets by improving their feed efficiencies as compared to the control.</p>



2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Maryam Davaran ◽  
Ahmad Abdi ◽  
Javad Mehrabani ◽  
Asieh Abbassi Daloii

Background: Oxidative stress harms cells and impairs the balance between oxidative and antioxidative factors. Exercise and capsaicin have anti-inflammatory and antioxidant effects, as well as some benefits on the cardiovascular system. Objectives: The aim of the present study was to examine the effect of aerobic training with capsaicin on heart changes oxidative stress in rats fed a high-fat diet (HFD). Methods: In this experimental study, 40 male Wistar rats were fed a normal diet (ND, n = 8) or HFD (n = 32) for 8 weeks. After eight weeks, all rats were divided into five groups: ND, HFD, high-fat diet-training (HFDT), high-fat diet-capsaicin (HFDCap), high-fat diet-training-capsaicin (HFDTCap). Training groups performed a progressive aerobic running program (at 15 - 25 m/min, 30 - 60 min/day, and 5 days/week) on a motor-driven treadmill for eight weeks. Capsaicin (4 mg/kg/day) was administered orally, by gavage, once a day. Results: The results showed significant increase in cardiac SOD, GPx and CAT levels in HFDT (P < 0.001), HFDCap (P < 0.001) and HFDTCap (P < 0.001) groups. Also, a significant increase in the amount of this index was observed in the HFDTCap compared to the HFDT and HFDCap groups (P < 0.05). The level of malondialdehyde (MDA) in all experimental groups was significantly lower than the HFD group (P < 0.001). Conclusions: Exercise and capsaicin improve HFD-induced oxidative stress. Therefore, exercise and capsaicin can be used as an appropriate alternative treatment for obesity and its associated inflammatory and oxidative effects.



Endocrinology ◽  
2013 ◽  
Vol 154 (11) ◽  
pp. 4226-4236 ◽  
Author(s):  
Fausto Bogazzi ◽  
Francesco Raggi ◽  
Dania Russo ◽  
Mohammad Bohlooly-Y ◽  
Chiara Sardella ◽  
...  

Insulin resistance is a key marker of both obesity and GH excess. The purpose of the study was to assess the role of GH on p53-mediated insulin resistance of male mice with obesity due to a high-fat diet. C57BL/6J × CBA male mice fed on a high-fat diet (Obe) were studied; male mice fed a normal diet (Lean) or transgenic mice for bovine GH under the same genetic background (Acro) served as controls. The convergence of p53 and GH pathways was evaluated by Western blot. Obe mice had insulin resistance, which was sustained by a selective increased expression of p53 in adipose tissue. Normal insulin sensitivity was restored, and adipose p53 expression normalized when the GH pathway was blocked. Only the adipose p53 expression was sensitive to the GH blockage, which occurred through the p38 pathway. Adipose tissue of Obe mice had a coordinate overexpression of suppressors of cytokine signal 1–3 and signal transducers and activators of transcription-1, -3, and -5b, not different from that of Acro mice, suggesting an increased sensitivity of adipose tissue to GH. On the contrary, Lean mice were unaffected by changes of GH action. GH seems to be necessary for the increased adipose p53 expression and for insulin resistance of obese mice.



2020 ◽  
Vol 17 (2) ◽  
pp. 192
Author(s):  
RONALDO LAU ◽  
SULISTIANA PRABOWO ◽  
RIAMI RIAMI

<p align="justify"><strong>ABSTRACT</strong><strong></strong></p><p align="justify"><strong>Background</strong>: High fat diet increase the absorption of lipid in the intestinum, that can lead to increase LDL cholesterol level in the blood. Sea grapes extract (<em>Caulerpa racemosa</em>) contains antioxidant polyphenolic group that can reduce MTP and ACAT-2 in the body that can decrease LDL cholesterol level in the blood.The purpose of this study is to know the effect of sea grapes extract  on decreasing LDL cholesterol of white male Wistar rats (<em>Rattus norvegicus</em>) fed with high fat diet.</p><p align="justify"><strong>Method</strong>:  24 white male Wistar rats, that divided into 3 groups: 1) group of rats fed with standard diet for 28 days; 2) group of rats fed with high fat diet for 28 days; 3) group of rats fed with high fat diet for 28 days and given 10 gram/kg body weight/day of sea grapes extract on 15<sup>th</sup>-28<sup>th</sup> days. Then the blood LDL cholesterol level measured on the 29<sup>th</sup> day.</p><p align="justify"><strong>Result :</strong> One-Way ANOVA Test showed there was significant difference (p=0.004) of LDL level between the group of rats fed with standard diet (12.37 mg/dl) compared to group of rats fed with high fat diet (17.87 mg/dl). There was significant difference (p=0.001) of LDL level between the group of rats fed with high fat diet (17.87 mg/dl) compared to group of rats fed with high fat diet and sea grapes extract (10.12 mg/dl).</p><p align="justify"><strong>Conclusion: </strong>high fat diet significantly increase blood LDL cholesterol level and sea grapes extract (<em>Caulerpa racemosa</em>) significantly decrease blood LDL cholesterol level.</p><p align="justify"> </p><p align="justify"><strong>Keywords :</strong>Sea grapes extract, LDL cholesterol, high fat diet</p>



2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Bo-Htay ◽  
T Shwe ◽  
S Palee ◽  
T Pattarasakulchai ◽  
K Shinlapawittayatorn ◽  
...  

Abstract Background D-galactose (D-gal) induced ageing has been shown to exacerbate left ventricular (LV) dysfunction via worsening of apoptosis and mitochondrial dysfunction in the heart of obese rats. Hyperbaric oxygen therapy (HBOT) has been demonstrated to exert anti-inflammatory and anti-apoptotic effects in multiple neurological disorders. However, the cardioprotective effect of HBOT on inflammation, apoptosis, LV and mitochondrial functions in D-gal induced ageing rats in the presence of obese-insulin resistant condition has never been investigated. Purpose We sought to determine the effect of HBOT on inflammation, apoptosis, mitochondrial functions and LV function in pre-diabetic rats with D-gal induced ageing. We hypothesized that HBOT attenuates D-gal induced cardiac mitochondrial dysfunctions and reduces inflammation and apoptosis, leading to improved LV function in pre-diabetic rats. Methods Forty-eight male Wistar rats were fed with either normal diet or high-fat diet for 12 weeks. Then, rats were treated with either vehicle groups (0.9% NSS, subcutaneous injection (SC)) or D-gal groups (150 mg/kg/day, SC) for 8 weeks. At week 21, rats in each group were equally divided into 6 sub-groups: normal diet fed rats treated with vehicle (NDV) sham, normal diet fed rats treated with D-gal (NDDg) sham, high fat diet fed rats treated with D-gal (HFDg) sham, high fat diet fed rats treated with vehicle (HFV) + HBOT, NDDg + HBOT and HFDg + HBOT. Sham treated rats were given normal concentration of O2 (flow rate of 80 L/min, 1 ATA for 60 minutes), whereas HBOT treated rats were subjected to 100% O2 (flow rate of 250 L/min, 2 ATA for 60 minutes), given once daily for 2 weeks. Results Under obese-insulin resistant condition, D-gal-induced ageing aggravated LV dysfunction (Fig 1A) and impaired cardiac mitochondrial function, increased cardiac inflammatory and apoptotic markers (Fig 1B). HBOT markedly reduced cardiac TNF-α level and TUNEL positive apoptotic cells, and improved cardiac mitochondrial function as indicated by decreased mitochondrial ROS production, mitochondrial depolarization and mitochondrial swelling, resulting in the restoration of the normal LV function in HFV and NDDg rats, compared to sham NDDg rats. In addition, in HFDg treated rats, HBOT attenuated cardiac TNF-α level, TUNEL positive apoptotic cells and cardiac mitochondrial dysfunction, compared to sham HFDg rats, leading to improved cardiac function as indicated by increased %LV ejection fraction (LVEF) (Figure 1). Conclusion HBOT efficiently alleviates D-gal-induced-age-related LV dysfunction through mitigating inflammation, apoptosis and mitochondrial dysfunction in pre-diabetic rats. Figure 1 Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): 1. The National Science and Technology Development Agency Thailand, 2. Thailand Research Fund Grants



2020 ◽  
Vol 11 (8) ◽  
pp. 753-766
Author(s):  
A.I. Zaydi ◽  
L.-C. Lew ◽  
Y.-Y. Hor ◽  
M.H. Jaafar ◽  
L.-O. Chuah ◽  
...  

Aging processes affect the brain in many ways, ranging from cellular to functional levels which lead to cognitive decline and increased oxidative stress. The aim of this study was to investigate the potentials of Lactobacillus plantarum DR7 on brain health including cognitive and memory functions during aging and the impacts of high fat diet during a 12-week period. Male Sprague-Dawley rats were separated into six groups: (1) young animals on normal diet (ND, (2) young animals on a high fat diet (HFD), (3) aged animals on ND, (4) aged animals on HFD, (5) aged animals on HFD and L. plantarum DR7 (109 cfu/day) and (6) aged animals receiving HFD and lovastatin. To induce ageing, all rats in group 3 to 6 were injected sub-cutaneously at 600 mg/kg/day of D-galactose daily. The administration of DR7 has reduced anxiety accompanied by enhanced memory during behavioural assessments in aged-HFD rats (P<0.05). Hippocampal concentration of all three pro-inflammatory cytokines were increased during aging but reduced upon administration of both statin and DR7. Expressions of hippocampal neurotransmitters and apoptosis genes showed reduced expressions of indoleamine dioxygenase and P53 accompanied by increased expression of TPH1 in aged- HFD rats administered with DR7, indicating potential effects of DR7 along the pathways of serotonin and oxidative senescence. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging. This study provided an insight into potentials of L. plantarum DR7 as a prospective dietary strategy to improve cognitive functions during aging.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Safia Akhtar ◽  
Silas A. Culver ◽  
Helmy M. Siragy

AbstractRecent studies suggested that renal gluconeogenesis is substantially stimulated in the kidney in presence of obesity. However, the mechanisms responsible for such stimulation are not well understood. Recently, our laboratory demonstrated that mice fed high fat diet (HFD) exhibited increase in renal Atp6ap2 [also known as (Pro)renin receptor] expression. We hypothesized that HFD upregulates renal gluconeogenesis via Atp6ap2-PGC-1α and AKT pathway. Using real-time polymerase chain reaction, western blot analysis and immunostaining, we evaluated renal expression of the Atp6ap2 and renal gluconeogenic enzymes, PEPCK and G6Pase, in wild type and inducible nephron specific Atp6ap2 knockout mice fed normal diet (ND, 12 kcal% fat) or a high-fat diet (HFD, 45 kcal% fat) for 8 weeks. Compared with ND, HFD mice had significantly higher body weight (23%) (P < 0.05), renal mRNA and protein expression of Atp6ap2 (39 and 35%), PEPCK (44 and 125%) and G6Pase (39 and 44%) respectively. In addition, compared to ND, HFD mice had increased renal protein expression of PGC-1α by 32% (P < 0.05) and downregulated AKT by 33% (P < 0.05) respectively in renal cortex. Atp6ap2-KO abrogated these changes in the mice fed HFD. In conclusion, we identified novel regulation of renal gluconeogenesis by Atp6ap2 in response to high fat diet via PGC1-α/AKT-1 pathway.



Sign in / Sign up

Export Citation Format

Share Document