scholarly journals Amphiphilic Poly(N-vinylpyrrolidone) Nanoparticles Conjugated with DR5-Specific Antitumor Cytokine DR5-B for Targeted Delivery to Cancer Cells

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1413
Author(s):  
Anne Yagolovich ◽  
Andrey Kuskov ◽  
Pavel Kulikov ◽  
Leily Kurbanova ◽  
Dmitry Bagrov ◽  
...  

Nanoparticles based on the biocompatible amphiphilic poly(N-vinylpyrrolidone) (Amph-PVP) derivatives are promising for drug delivery. Amph-PVPs self-aggregate in aqueous solutions with the formation of micellar nanoscaled structures. Amph-PVP nanoparticles are able to immobilize therapeutic molecules under mild conditions. As is well known, many efforts have been made to exploit the DR5-dependent apoptosis induction for cancer treatment. The aim of the study was to fabricate Amph-PVP-based nanoparticles covalently conjugated with antitumor DR5-specific TRAIL (Tumor necrosis factor-related apoptosis-inducing ligand) variant DR5-B and to evaluate their in vitro cytotoxicity in 3D tumor spheroids. The Amph-PVP nanoparticles were obtained from a 1:1 mixture of unmodified and maleimide-modified polymeric chains, while DR5-B protein was modified by cysteine residue at the N-end for covalent conjugation with Amph-PVP. The nanoparticles were found to enhance cytotoxicity effects compared to those of free DR5-B in both 2D (monolayer culture) and 3D (tumor spheroids) in vitro models. The cytotoxicity of the nanoparticles was investigated in human cell lines, namely breast adenocarcinoma MCF-7 and colorectal carcinomas HCT116 and HT29. Notably, DR5-B conjugation with Amph-PVP nanoparticles sensitized resistant multicellular tumor spheroids from MCF-7 and HT29 cells. Taking into account the nanoparticles loading ability with a wide range of low-molecular-weight antitumor chemotherapeutics into hydrophobic core and feasibility of conjugation with hydrophilic therapeutic molecules by click chemistry, we suggest further development to obtain a versatile system for targeted drug delivery into tumor cells.

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1617
Author(s):  
Rosa Garriga ◽  
Tania Herrero-Continente ◽  
Miguel Palos ◽  
Vicente L. Cebolla ◽  
Jesús Osada ◽  
...  

Carbon nanomaterials have attracted increasing attention in biomedicine recently to be used as drug nanocarriers suitable for medical treatments, due to their large surface area, high cellular internalization and preferential tumor accumulation, that enable these nanomaterials to transport chemotherapeutic agents preferentially to tumor sites, thereby reducing drug toxic side effects. However, there are widespread concerns on the inherent cytotoxicity of carbon nanomaterials, which remains controversial to this day, with studies demonstrating conflicting results. We investigated here in vitro toxicity of various carbon nanomaterials in human epithelial colorectal adenocarcinoma (Caco-2) cells and human breast adenocarcinoma (MCF-7) cells. Carbon nanohorns (CNH), carbon nanotubes (CNT), carbon nanoplatelets (CNP), graphene oxide (GO), reduced graphene oxide (GO) and nanodiamonds (ND) were systematically compared, using Pluronic F-127 dispersant. Cell viability after carbon nanomaterial treatment followed the order CNP < CNH < RGO < CNT < GO < ND, being the effect more pronounced on the more rapidly dividing Caco-2 cells. CNP produced remarkably high reactive oxygen species (ROS) levels. Furthermore, the potential of these materials as nanocarriers in the field of drug delivery of doxorubicin and camptothecin anticancer drugs was also compared. In all cases the carbon nanomaterial/drug complexes resulted in improved anticancer activity compared to that of the free drug, being the efficiency largely dependent of the carbon nanomaterial hydrophobicity and surface chemistry. These fundamental studies are of paramount importance as screening and risk-to-benefit assessment towards the development of smart carbon nanomaterial-based nanocarriers.


2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Putri Nur Hidayah Al-Zikri ◽  
Muhammad Taher ◽  
Deny Susanti ◽  
Solachuddin Jauhari Arief Ichwan

Luvunga scandens belongs to the family of Rutaceae which usually inhabit tropical and moist environment. This plant is known as ‘Mengkurat Jakun’ among locals and used traditionally to treat fever and fatigue via decoction. The aim of this study was to investigate the cytotoxic activity of the leaves and stems extracts of L. scandens extract. Extracts of the leaves and stems were obtained from sequential extraction procedures by various organic solvents. All extracts were subjected to cytotoxic study by 3-(4, 5-dimethylthaizol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. In in vitro cytotoxicity assay, all L. scandens extracts exhibited cytotoxicity against human breast adenocarcinoma (MCF-7) and human lung adenocarcinoma (A549) cell lines. The IC50 values of dichloromethane and methanol extracts from the leaves of L. scandens against MCF-7 cell line were 62.5 µg/mL and 88.0 µg/mL, respectively, whereas IC50 of methanol extract from stem was 81.0 µg/mL. All extracts were less active against A549 cell line where IC50 value were not be determined. The present findings revealed the potential of L. scandens as a cytotoxic agent against MCF-7 cell line. However, further studies should be planned to evaluate role of the plant in cytotoxic activity.


2021 ◽  
Author(s):  
Alexander Vaneev ◽  
Petr Gorelkin ◽  
Olga Krasnovskaya ◽  
Roman Akasov ◽  
Daniil Spector ◽  
...  

The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and novel techniques for simple, non-expensive, sensitive, and selective detection of various analytes in tumors are of great importance. In this paper we propose the use of platinized carbon nanoelectrodes (PtNE) for electrochemical detection of platinum-based drugs in various biological models, including single cells and tumor spheroids in vitro, and inside solid tumors in vivo. We have demonstrated quantitative direct detection of Pt(II) in breast adenocarcinoma MCF-7 cells treated with cisplatin and cisplatin-based DNP prodrug. To realize the potential of this technique in advanced tumor models, we measured Pt(II) in 3D tumor spheroids in vitro and tumor-bearing mice in vivo. The concentration gradient of Pt (II) species correlated with the distance from the sample surface in MCF-7 tumor spheroids. We then performed detection of Pt(II) species in tumor-bearing mice treated intravenously with cisplatin and DNP. We found that there was deeper penetration of DNP in comparison to cisplatin. This research demonstrates a novel minimally invasive, real-time electrochemical technique for the study of platinum-based drugs.


2020 ◽  
Vol 32 (4) ◽  
pp. 975-980 ◽  
Author(s):  
V. Natchimuthu ◽  
S. Ravi ◽  
Murugan Ramalingam ◽  
V. Renuga

The reaction of (S)-(+)-2,3-dihydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11(10H,11aH)-dione (1) with 4-(trifluoromethyl)benzoic acid (2, C8H5F3O2) in dimethylformamide leads to the formation of C8H5F3O2 (1) as a classical ionic salt 3. The structure of new compound has been characterized by FTIR, 1H NMR, 13C NMR, HRMS spectroscopy. The new compound was tested for in vitro cytotoxicity evaluation by MTT assay against breast adenocarcinoma cell line of MCF-7 cells. A new compound 3 (IC50:199 μM) emerged as minimal toxic when compared to clinical drugs carbamazepine, topiramate and benzodiazepine. A preliminary study of structure activity relationship revealed that the incorporation of fluoro or trifluoromethyl moiety into the compound, even through ionic bond formation, had a great effect on the biological activity and with less toxicity or side effects.


2020 ◽  
Vol 58 (1) ◽  
pp. 71-85
Author(s):  
Thirupati Chinna Venkateswarulu ◽  
Gaddam Eswaraiah ◽  
Srirama Krupanidhi ◽  
Karlapudi Abraham Peele ◽  
Indira Mikkili ◽  
...  

Mangroves contain a wide range of bioactive compounds with pharmacological activities. In the present study, we analysed the separation and detection of phytoconstituents with the methanol extract of Ipomoea tuba leaf using gas chromatography-mass spectrometry (GC-MS) and tested its in vitro cytotoxicity effect against MCF-7 and HeLa cells. Phytochemical compounds such as docosanoic, octadecatrienoic and cis-9-octadecanoic acids, triterpenoid γ-sitosterol, and terpene alcohol in methanol extract of I. tuba leaf were identified. Furthermore, in vitro antiproliferative activity of the extract of I. tuba leaf was evaluated using MCF-7 and HeLa cells. The results indicated a reduction of cell viability of 37.43 and 41.89 % of MCF-7 and HeLa cells respectively. The methanol extract of I. tuba leaf proved to be effective in protecting the cells against oxidative stress. This is the first report on the in vitro cytotoxicity effect of I. tuba leaf extract on MCF-7 and HeLa cells.


2020 ◽  
Vol 21 (16) ◽  
pp. 5659
Author(s):  
Kheira Zanoune Dellali ◽  
Delia Mihaela Rata ◽  
Marcel Popa ◽  
M’hamed Djennad ◽  
Abdallah Ouagued ◽  
...  

Cancer remains one of the world’s most devastating diseases and is responsible for more than 20% of all deaths. It is defined as uncontrolled proliferation of cells and spreads rapidly to healthy tissue. Controlled drug delivery systems offers great opportunities for the development of new non-invasive strategies for the treatment of cancers. The main advantage of these systems is their capacity to accumulate in tumors via enhanced permeability and retention effects. In the present study, an innovative hybrid drug delivery system based on nanocapsules obtained from the interfacial condensation between chitosan and poly(N-vinyl pyrrolidone-alt-itaconic anhydride) and containing both magnetic nanoparticles and an antitumoral drug was developed in order to improve the efficiency of the antitumoral treatment. Using dynamic light scattering, it was observed that the mean diameter of these hybrid nanocapsules was in the range of 43 to 142 nm. SEM confirmed their nanometric size and their well-defined spherical shape. These nanocapsules allowed the encapsulation of an increased amount of 5-fluorouracil and provided controlled drug release. In vitro studies have revealed that these drug-loaded hybrid nanocapsules were able to induce a cytostatic effect on breast carcinoma MCF-7 cell lines (Human Caucasian breast adenocarcinoma - HTB-22) comparable to that of the free drug.


Author(s):  
G D Chandrethiya ◽  
P K Shelat ◽  
M N Zaveri

PEGylated gelatin nanoparticles loaded with colchicine were prepared by ethanol precipitation method. Poly-(ethylene glycol)-5000-monomethylether (MPEG 5000), a hydrophilic polymer, was used to pegylate gelatin.  Gluteraldehyde was used as cross-linking agent. To obtain a high quality product, major formulation parameters were optimized.  Spherical particles with mean particles of 193 nm were measured by a Malvern particle size analyzer. Entrapment efficiency was found to be 71.7 ± 1.4% and determined with reverse phase high performance liquid charomatography (RP-HPLC). The in vitro drug release study was performed by dialysis bag method for a period of 168 hours. Lyophilizaton study showed sucrose at lower concentrations proved the best cryoprotectant for this formulation.  Stability study revealed that lyophilized nanoparticles were equally effective (p < 0.05) after one year of storage at 2-8°C with ambient humidity. In vitro antitumoral activity was accessed using the MCF-7 cell line by MTT assay.  The IC50 value was found to be 0.034 μg/ml for the prepared formulation. The results indicate that PEGylated gelatin nanoparticles could be utilized as a potential drug delivery for targeted drug delivery of tumors.  


Sign in / Sign up

Export Citation Format

Share Document