scholarly journals Nano-Enabled Products: Challenges and Opportunities for Sustainable Agriculture

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2727
Author(s):  
Vishnu D. Rajput ◽  
Abhishek Singh ◽  
Tatiana Minkina ◽  
Sapna Rawat ◽  
Saglara Mandzhieva ◽  
...  

Nanotechnology has gained popularity in recent years owing to its established potential for application and implementation in various sectors such as medical drugs, medicine, catalysis, energy, material, and plant science. Nanoparticles (NPs) are smaller in size (1–100 nm) with a larger surface area and have many fruitful applications. The extraordinary functions of NPs are utilized in sustainable agriculture due to nano-enabled products, e.g., nano-insecticides, nano-pesticides, and nano-fertilizers. Nanoparticles have lately been suggested as an alternate method for controlling plant pests such as insects, fungi, and weeds. Several NPs exhibit antimicrobial properties considered in food packaging processes; for example, Ag-NPs are commonly used for such purposes. Apart from their antimicrobial properties, NPs such as Si, Ag, Fe, Cu, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes have also been demonstrated to have negative impacts on plant growth and development. This review examines the field-use of nano-enabled products in sustainable agriculture, future perspectives, and growing environmental concerns. The remarkable information on commercialized nano-enabled products used in the agriculture and allied sectors are also provided.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1544
Author(s):  
Jet Yin Boey ◽  
Lydia Mohamad ◽  
Yong Sen Khok ◽  
Guan Seng Tay ◽  
Siti Baidurah

Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 345
Author(s):  
Daniele Valerini ◽  
Loredana Tammaro ◽  
Roberta Vitali ◽  
Gloria Guillot ◽  
Antonio Rinaldi

Porous scaffolds made of biocompatible and environmental-friendly polymer fibers with diameters in the nano/micro range can find applications in a wide variety of sectors, spanning from the biomedical field to textiles and so on. Their development has received a boost in the last decades thanks to advances in the production methods, such as the electrospinning technique. Conferring antimicrobial properties to these fibrous structures is a primary requirement for many of their applications, but the addition of antimicrobial agents by wet methods can present a series of drawbacks. In this work, strong antibacterial action is successfully provided to electrospun polycaprolactone (PCL) scaffolds by silver (Ag) addition through a simple and flexible way, namely the sputtering deposition of silver onto the PCL fibers. SEM-EDS analyses demonstrate that the polymer fibers get coated by Ag nanoparticles without undergoing any alteration of their morphological integrity upon the deposition process. The influence on wettability is evaluated with polar (water) and non-polar (diiodomethane) liquids, evidencing that this coating method allows preserving the hydrophobic character of the PCL polymer. Excellent antibacterial action (reduction > 99.995% in 4 h) is demonstrated against Escherichia coli. The easy fabrication of these PCL-Ag mats can be applicable to the production of biomedical devices, bioremediation and antifouling systems in filtration, personal protective equipment (PPE), food packaging materials, etc.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1067
Author(s):  
Behnaz Mehravani ◽  
Ana Isabel Ribeiro ◽  
Andrea Zille

Depositing nanoparticles in textiles have been a promising strategy to achieve multifunctional materials. Particularly, antimicrobial properties are highly valuable due to the emergence of new pathogens and the spread of existing ones. Several methods have been used to functionalize textile materials with gold nanoparticles (AuNPs). Therefore, this review highlighted the most used methods for AuNPs preparation and the current studies on the topic in order to obtain AuNPs with suitable properties for antimicrobial applications and minimize the environmental concerns in their production. Reporting the detailed information on the functionalization of fabrics, yarns, and fibers with AuNPs by different methods to improve the antimicrobial properties was the central objective. The studies combining AuNPs and textile materials have opened valuable opportunities to develop antimicrobial materials for health and hygiene products, as infection control and barrier material, with improved properties. Future studies are needed to amplify the antimicrobial effect of AuNPs onto textiles and minimize the concerns related to the synthesis.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2133
Author(s):  
Helena Oliver-Ortega ◽  
Josep Tresserras ◽  
Fernando Julian ◽  
Manel Alcalà ◽  
Alba Bala ◽  
...  

Packaging consumes around 40% of the total plastic production. One of the most important fields with high requirements is food packaging. Food packaging products have been commonly produced with petrol polymers, but due to environmental concerns, the market is being moved to biopolymers. Poly (lactic acid) (PLA) is the most promising biopolymer, as it is bio-based and biodegradable, and it is well established in the market. Nonetheless, its barrier properties need to be enhanced to be competitive with other polymers such as polyethylene terephthalate (PET). Nanoclays improve the barrier properties of polymeric materials if correct dispersion and exfoliation are obtained. Thus, it marks a milestone to obtain an appropriate dispersion. A predispersed methodology is proposed as a compounding process to improve the dispersion of these composites instead of common melt procedures. Afterwards, the effect of the polarity of the matrix was analyzing using polar and surface modified nanoclays with contents ranging from 2 to 8% w/w. The results showed the suitability of the predispersed and concentrated compound, technically named masterbatch, to obtain intercalated structures and the higher dispersion of polar nanoclays. Finally, the mechanical performance and sustainability of the prepared materials were simulated in a food tray, showing the best assessment of these materials and their lower fingerprint.


Foods ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 121
Author(s):  
Ghita Amor ◽  
Mohammed Sabbah ◽  
Lucia Caputo ◽  
Mohamed Idbella ◽  
Vincenzo De Feo ◽  
...  

The essential oil (EO) from basil—Ocimum basilicum—was characterized, microencapsulated by vibration technology, and used to prepare a new type of packaging system designed to extend the food shelf life. The basil essential oil (BEO) chemical composition and antimicrobial activity were analyzed, as well as the morphological and biological properties of the derived BEO microcapsules (BEOMC). Analysis of BEO by gas chromatography demonstrated that the main component was linalool, whereas the study of its antimicrobial activity showed a significant inhibitory effect against all the microorganisms tested, mostly Gram-positive bacteria. Moreover, the prepared BEOMC showed a spheroidal shape and retained the EO antimicrobial activity. Finally, chitosan-based edible films were produced, grafted with BEOMC, and characterized for their physicochemical and biological properties. Since their effective antimicrobial activity was demonstrated, these films were tested as packaging system by wrapping cooked ham samples during 10 days of storage, with the aim of their possible use to extend the shelf life of the product. It was demonstrated that the obtained active film can both control the bacterial growth of the cooked ham and markedly inhibit the pH increase of the packaged food.


2020 ◽  
Vol 38 (No. 6) ◽  
pp. 337-346
Author(s):  
Emmanuelle Silva ◽  
Juliana Oliveira ◽  
Yhelda Silva ◽  
Stela Urbano ◽  
Danielle Sales ◽  
...  

The objective of this review was to search the literature for studies on the lactoperoxidase system (LPS) as milk natural preservation, action mechanisms, usage methods and perspectives for the dairy industry. A comprehensive literature review approach was conducted for collecting evidence in scientific publications. The biological properties of milk promote the development of microorganisms which compromise its quality, therefore demanding the use of techniques for preserving the milk matrix from its collection until processing. Within this context, LPS could represent an alternative to guarantee the safety of this food in are as where refrigeration is not possible; in addition, studies on applying this system in the dairy industry have been explored, as is the case in the test for verifying pasteurisation efficiency according to determining the lactoperoxidase enzyme activity. Natural antimicrobial properties of LPS make it a promising alternative for the industrial preservation and processing of milk, especially when considering the current quality standard demanded by the market. However, the potential of LPS as a biopreservative is still little technically and scientifically explored, which implies the need to develop new studies.


Author(s):  
Hani Albasoos ◽  
Gubara Hassan ◽  
Sara Al Zadjali

This study reviews the challenges and opportunities encountered by Qatar because of the blockade imposed by the neighboring countries, namely Saudi Arabia, the United Arab Emirates (UAE), Bahrain, and Egypt. It endeavors to highlight potential scenarios of the crisis. This paper employs a secondary source of information to achieve the objectives, such as books, articles, reports, and academic research, which were later subjected to thematic analysis. The findings of this research reveal that crisis management was an effective strategy implemented by the Qatari Government. It helped Qatari officials to change and transfer the negative impacts to a positive force. The crisis management strategy encouraged Qatar to rely on their local industries, improve education and media institutes, and use Qatar’s soft power internationally. Although 2017 was a challenging year for Qatar due to the crisis, yet the national economy showed an accelerated growth of 5% in the second half of the same year. 


Author(s):  
Elena E. Kuprina ◽  
◽  
Anastasiya N. Yakkola ◽  
Andrey N. Manuylov ◽  
Elena I. Kiprushkina ◽  
...  

Food edible coatings are an important milestone in food production and one of the innovations in food packaging development. This article presents materials on the development of the formulation and technology for the manufacture of a novel composite coating based on sodium alginate, chitosan and protein hydrolysate obtained by the electrochemical method of double extraction from cod processing waste to obtain edible coatings for semi-finished fish products. Furthermore, the physicochemical, physical, mechanical and microbiological properties of this material are described.


2020 ◽  
Vol 21 (5) ◽  
pp. 1618 ◽  
Author(s):  
Mingxi Jia ◽  
Wenjing Zhang ◽  
Taojin He ◽  
Meng Shu ◽  
Jing Deng ◽  
...  

Nano Ag has excellent antibacterial properties and is widely used in various antibacterial materials, such as antibacterial medicine and medical devices, food packaging materials and antibacterial textiles. Despite the many benefits of nano-Ag, more and more research indicates that it may have potential biotoxic effects. Studies have shown that people who ingest nanoparticles by mouth have the highest uptake in the intestinal tract, and that the colon area is the most vulnerable to damage and causes the disease. In this study, we examined the toxic effects of different concentrations of Ag-NPs on normal human colon cells (NCM460) and human colon cancer cells (HCT116). As the concentration of nanoparticles increased, the activity of the two colon cells decreased and intracellular reactive oxygen species (ROS) increased. RT-qPCR and Western-blot analyses showed that Ag NPs can promote the increase in P38 protein phosphorylation levels in two colon cells and promote the expression of P53 and Bax. The analysis also showed that Ag NPs can promote the down-regulation of Bcl-2, leading to an increased Bax/Bcl-2 ratio and activation of P21, further accelerating cell death. This study showed that a low concentration of nano Ag has no obvious toxic effect on colon cells, while nano Ag with concentrations higher than 15 μg/mL will cause oxidative damage to colon cells.


Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1157 ◽  
Author(s):  
Angela Scala ◽  
Anna Piperno ◽  
Alexandru Hada ◽  
Simion Astilean ◽  
Adriana Vulpoi ◽  
...  

A straightforward and green method for the synthesis of gold, silver, and silver chloride nanoparticles (Au NPs and Ag/AgCl NPs) was developed using three different microbial exopolymers (EP) as reducing and stabilizing agents. The exopolysaccharides EPS B3-15 and EPS T14 and the poly-γ-glutamic acid γ-PGA-APA were produced by thermophilic bacteria isolated from shallow hydrothermal vents off the Eolian Islands (Italy) in the Mediterranean Sea. The production of metal NPs was monitored by UV−Vis measurements by the typical plasmon resonance absorption peak and their antimicrobial activity towards Gram-positive and Gram- negative bacteria (Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa), as well as fungi (Candida albicans) was investigated. The biological evaluation showed no activity for EP-Au NPs, except against E. coli, whereas EP-Ag NPs exhibited a broad-spectrum of activity. The chemical composition, morphology, and size of EP-Ag NPs were investigated by UV–Vis, zeta potential (ζ), dynamic light scattering (DLS) measurements and transmission electron microscopy (TEM). The best antimicrobial results were obtained for EPS B3-15-Ag NPs and EPS T14-Ag NPs (Minimum Inhibitory Concentration, MIC: 9.37–45 µg/mL; Minimum Bactericidal Concentration/Minimum Fungicidal Concentration, MBC/MFC: 11.25–75 µg/mL).


Sign in / Sign up

Export Citation Format

Share Document