scholarly journals Orchids of Azerbaijani Cemeteries

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2779
Author(s):  
Attila Molnár V. ◽  
Viktor Löki ◽  
Marc Verbeeck ◽  
Kristóf Süveges

In order to explore their orchid flora, we performed surveys of 96 Azerbaijani burial places in 2018 and 2019. Altogether, 28 orchid taxa were found in 37 visited cemeteries. In the orchid diversity a remarkable pattern was observed: geographic latitude was significantly and positively related to the number of taxa and number of individuals. The most widespread and abundant orchids in Azerbaijani graveyards were Anacamptis pyramidalis and A. papilionacea (found in 23 and 8 cemeteries, respectively). Azerbaijani cemeteries can be important refuges for rare and threatened orchids, e.g., Himantoglossum formosum (three cemeteries), Ophrys sphegodes subsp. mammosa (eight), Orchis adenocheila (two), O. punctulata (three), O. stevenii (one) and Steveniella satyrioides (one). Epipactis turcica, detected in a single locality, was previously unknown to the flora of Azerbaijan. Additionally, we documented orchid tuber (salep) collection in two cemeteries.

Author(s):  
Martin Chavant ◽  
Alexis Hervais-Adelman ◽  
Olivier Macherey

Purpose An increasing number of individuals with residual or even normal contralateral hearing are being considered for cochlear implantation. It remains unknown whether the presence of contralateral hearing is beneficial or detrimental to their perceptual learning of cochlear implant (CI)–processed speech. The aim of this experiment was to provide a first insight into this question using acoustic simulations of CI processing. Method Sixty normal-hearing listeners took part in an auditory perceptual learning experiment. Each subject was randomly assigned to one of three groups of 20 referred to as NORMAL, LOWPASS, and NOTHING. The experiment consisted of two test phases separated by a training phase. In the test phases, all subjects were tested on recognition of monosyllabic words passed through a six-channel “PSHC” vocoder presented to a single ear. In the training phase, which consisted of listening to a 25-min audio book, all subjects were also presented with the same vocoded speech in one ear but the signal they received in their other ear differed across groups. The NORMAL group was presented with the unprocessed speech signal, the LOWPASS group with a low-pass filtered version of the speech signal, and the NOTHING group with no sound at all. Results The improvement in speech scores following training was significantly smaller for the NORMAL than for the LOWPASS and NOTHING groups. Conclusions This study suggests that the presentation of normal speech in the contralateral ear reduces or slows down perceptual learning of vocoded speech but that an unintelligible low-pass filtered contralateral signal does not have this effect. Potential implications for the rehabilitation of CI patients with partial or full contralateral hearing are discussed.


2013 ◽  
Vol 221 (3) ◽  
pp. 145-159 ◽  
Author(s):  
Gerard J. P. van Breukelen

This paper introduces optimal design of randomized experiments where individuals are nested within organizations, such as schools, health centers, or companies. The focus is on nested designs with two levels (organization, individual) and two treatment conditions (treated, control), with treatment assignment to organizations, or to individuals within organizations. For each type of assignment, a multilevel model is first presented for the analysis of a quantitative dependent variable or outcome. Simple equations are then given for the optimal sample size per level (number of organizations, number of individuals) as a function of the sampling cost and outcome variance at each level, with realistic examples. Next, it is explained how the equations can be applied if the dependent variable is dichotomous, or if there are covariates in the model, or if the effects of two treatment factors are studied in a factorial nested design, or if the dependent variable is repeatedly measured. Designs with three levels of nesting and the optimal number of repeated measures are briefly discussed, and the paper ends with a short discussion of robust design.


2018 ◽  
Author(s):  
Richard Robert Suminski Jr ◽  
Gregory Dominick ◽  
Philip Sapanaro

BACKGROUND A considerable proportion of outdoor physical activity is done on sidewalk/streets. For example, we found that ~70% of adults who walked during the previous week used the sidewalks/streets around their homes. Interventions conducted at geographical levels (e.g., community) and studies examining relationships between environmental conditions (e.g., traffic) and walking/biking, necessitate a reliable measure of physical activities performed on sidewalks/streets. The Block Walk Method (BWM) is one of the more common approaches available for this purpose. Although it utilizes reliable observation techniques and displays criterion validity, it remains relatively unchanged since its introduction in 2006. It is a non-technical, labor-intensive, first generation method. Advancing the BWM would contribute significantly to our understanding of physical activity behavior. OBJECTIVE Therefore, the objective of the proposed study is to develop and test a new BWM that utilizes a wearable video device (WVD) and computer video analysis to assess physical activities performed on sidewalks/streets. The following aims will be completed to accomplish this objective. Aim 1: Improve the BWM by incorporating a WVD into the methodology. The WVD is a pair of eyeglasses with a high definition video camera embedded into the frames. We expect the WVD to be a viable option for improving the acquisition and accuracy of data collected using the BWM. Aim 2: Advance the WVD-enhanced BWM by applying machine learning and recognition software to automatically extract information on physical activities occurring on the sidewalks/streets from the videos. METHODS Trained observers (one wearing and one not wearing the WVD) will walk together at a set pace along predetermined, 1000 ft. sidewalk/street observation routes representing low, medium, and high walkable areas. During the walks, the non-WVD observer will use the traditional BWM to record the number of individuals standing/sitting, walking, biking, and running along the routes. The WVD observer will only record a video while walking. Later, two investigators will view the videos to determine the numbers of individuals performing physical activities along the routes. For aim 2, the video data will be analyzed automatically using multiple deep convolutional neural networks (CNNs) to determine the number of humans along an observation route as well as the type of physical activities being performed. Bland Altman methods and intraclass correlation coefficients will be used to assess agreement. Potential sources of error such as occlusions (e.g., trees) will be assessed using moderator analyses. RESULTS Outcomes from this study are pending; however, preliminary studies supporting the research protocol indicate that the BWM is reliable and the number of individuals were seen walking along routes are correlated with several environmental characteristics (e.g., traffic, sidewalk defects). Further, we have used CNNs to detect cars, bikes, and pedestrians as well as individuals using park facilities. CONCLUSIONS We expect the new approach will enhance measurement accuracy while reducing the burden of data collection. In the future, the capabilities of the WVD-CNNs system will be expanded to allow for the determination of other characteristics captured by the videos such as caloric expenditure and environmental conditions.


Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations involves the application of evolutionary genetic theory and knowledge to alleviate problems due to inbreeding and loss of genetic diversity in small population fragments. Populations evolve through the effects of mutation, natural selection, chance (genetic drift) and gene flow (migration). Large outbreeding, sexually reproducing populations typically contain substantial genetic diversity, while small populations typically contain reduced levels. Genetic impacts of small population size on inbreeding, loss of genetic diversity and population differentiation are determined by the genetically effective population size, which is usually much smaller than the number of individuals.


Author(s):  
M.D. Wildsmith ◽  
I.C. Potter ◽  
F.J. Valesini ◽  
M.E. Platell

Benthic macroinvertebrates were sampled seasonally in the subtidal and upper and lower swash zones at two sites in each of six nearshore habitat types on the lower west coast of Australia. The habitat types, which differed mainly in the extent of their exposure to wave activity and whether sea grass and/or nearshore reefs were present, had been distinguished quantitatively using values for a suite of seven statistically-selected enduring environmental characteristics (Valesini et al., 2003). The core samples yielded 121 species representing eight phyla, among which the Polychaeta, Malacostraca and Bivalvia were the most speciose classes, contributing ∼38, 23 and 10%, respectively, to the total number of individuals. The total number of species and mean density of macroinvertebrates at the most protected habitat type (1), i.e. 70 and 209·2 individuals 0·1 m−2, respectively, were far greater than in any other habitat type. Habitat type influenced species composition to a greater extent than either zone or season. Furthermore, the extents of the differences among the species compositions of the six habitat types statistically matched the extents of the differences among the values for the suite of enduring environmental characteristics that distinguished each of those habitat types. Overall, the species composition at habitat type 1 was the most distinct, containing five abundant species of polychaetes that were adapted to deposit-feeding in calm waters with high levels of organic material and which were rare in all other habitat types. In contrast, the fauna at the most exposed habitat type was characterized by four crustacean species and a species of bivalve and polychaete, whose mobility and tough external surface facilitated their survival and feeding in turbulent waters. The zonal differences in faunal compositions among habitat types were greatest in the case of the subtidal zone. The faunal compositions differed among zones and seasons only at the most protected habitat type.


2021 ◽  
Vol 10 (13) ◽  
pp. 2776
Author(s):  
Miren Altuna ◽  
Sandra Giménez ◽  
Juan Fortea

Individuals with Down syndrome (DS) have an increased risk for epilepsy during the whole lifespan, but especially after age 40 years. The increase in the number of individuals with DS living into late middle age due to improved health care is resulting in an increase in epilepsy prevalence in this population. However, these epileptic seizures are probably underdiagnosed and inadequately treated. This late onset epilepsy is linked to the development of symptomatic Alzheimer’s disease (AD), which is the main comorbidity in adults with DS with a cumulative incidence of more than 90% of adults by the seventh decade. More than 50% of patients with DS and AD dementia will most likely develop epilepsy, which in this context has a specific clinical presentation in the form of generalized myoclonic epilepsy. This epilepsy, named late onset myoclonic epilepsy (LOMEDS) affects the quality of life, might be associated with worse cognitive and functional outcomes in patients with AD dementia and has an impact on mortality. This review aims to summarize the current knowledge about the clinical and electrophysiological characteristics, diagnosis and treatment of epileptic seizures in the DS population, with a special emphasis on LOMEDS. Raised awareness and a better understanding of epilepsy in DS from families, caregivers and clinicians could enable earlier diagnoses and better treatments for individuals with DS.


2021 ◽  
pp. 1-15
Author(s):  
Jinding Gao

In order to solve some function optimization problems, Population Dynamics Optimization Algorithm under Microbial Control in Contaminated Environment (PDO-MCCE) is proposed by adopting a population dynamics model with microbial treatment in a polluted environment. In this algorithm, individuals are automatically divided into normal populations and mutant populations. The number of individuals in each category is automatically calculated and adjusted according to the population dynamics model, it solves the problem of artificially determining the number of individuals. There are 7 operators in the algorithm, they realize the information exchange between individuals the information exchange within and between populations, the information diffusion of strong individuals and the transmission of environmental information are realized to individuals, the number of individuals are increased or decreased to ensure that the algorithm has global convergence. The periodic increase of the number of individuals in the mutant population can greatly increase the probability of the search jumping out of the local optimal solution trap. In the iterative calculation, the algorithm only deals with 3/500∼1/10 of the number of individual features at a time, the time complexity is reduced greatly. In order to assess the scalability, efficiency and robustness of the proposed algorithm, the experiments have been carried out on realistic, synthetic and random benchmarks with different dimensions. The test case shows that the PDO-MCCE algorithm has better performance and is suitable for solving some optimization problems with higher dimensions.


2021 ◽  
pp. 112067212199896
Author(s):  
János Németh ◽  
Beáta Tapasztó ◽  
Wagih A Aclimandos ◽  
Philippe Kestelyn ◽  
Jost B Jonas ◽  
...  

The prevalence of myopia is increasing extensively worldwide. The number of people with myopia in 2020 is predicted to be 2.6 billion globally, which is expected to rise up to 4.9 billion by 2050, unless preventive actions and interventions are taken. The number of individuals with high myopia is also increasing substantially and pathological myopia is predicted to become the most common cause of irreversible vision impairment and blindness worldwide and also in Europe. These prevalence estimates indicate the importance of reducing the burden of myopia by means of myopia control interventions to prevent myopia onset and to slow down myopia progression. Due to the urgency of the situation, the European Society of Ophthalmology decided to publish this update of the current information and guidance on management of myopia. The pathogenesis and genetics of myopia are also summarized and epidemiology, risk factors, preventive and treatment options are discussed in details.


2021 ◽  
Vol 7 (14) ◽  
pp. eabg0677
Author(s):  
Becca Franks ◽  
Christopher Ewell ◽  
Jennifer Jacquet

The unprecedented growth of aquaculture involves well-documented environmental and public-health costs, but less is understood about global animal welfare risks. Integrating data from multiple sources, we estimated the taxonomic diversity of farmed aquatic animals, the number of individuals killed annually, and the species-specific welfare knowledge (absence of which indicates extreme risk). In 2018, FAO reported 82.12 million metric tons of farmed aquatic animals from six phyla and at least 408 species—20 times the number of species of farmed terrestrial animals. The farmed aquatic animal tonnage represents 250 to 408 billion individuals, of which 59 to 129 billion are vertebrates (e.g., carps, salmonids). Specialized welfare information was available for 84 species, only 30% of individuals; the remaining 70% either had no welfare publications or were of an unknown species. With aquaculture growth outpacing welfare knowledge, immediate efforts are needed to safeguard the welfare of high-production, understudied species and to create policies that minimize welfare risks.


2020 ◽  
Vol 9 (s1) ◽  
Author(s):  
Babak Jamshidi ◽  
Shahriar Jamshidi Zargaran ◽  
Mansour Rezaei

AbstractIntroductionTime series models are one of the frequently used methods to describe the pattern of spreading an epidemic.MethodsWe presented a new family of time series models able to represent the cumulative number of individuals that contracted an infectious disease from the start to the end of the first wave of spreading. This family is flexible enough to model the propagation of almost all infectious diseases. After a general discussion on competent time series to model the outbreak of a communicable disease, we introduced the new family through one of its examples.ResultsWe estimated the parameters of two samples of the novel family to model the spreading of COVID-19 in China.DiscussionOur model does not work well when the decreasing trend of the rate of growth is absent because it is the main presumption of the model. In addition, since the information on the initial days is of the utmost importance for this model, one of the challenges about this model is modifying it to get qualified to model datasets that lack the information on the first days.


Sign in / Sign up

Export Citation Format

Share Document