scholarly journals Physiology Based Approaches for Breeding of Next-Generation Food Legumes

Plants ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 72 ◽  
Author(s):  
Arun Shunmugam ◽  
Udhaya Kannan ◽  
Yunfei Jiang ◽  
Ketema Daba ◽  
Linda Gorim

Plant breeders and agricultural scientists of the 21st century are challenged to increase the yield potentials of crops to feed the growing world population. Climate change, the resultant stresses and increasing nutrient deficiencies are factors that are to be considered in designing modern plant breeding pipelines. Underutilized food legumes have the potential to address these issues and ensure food security in developing nations of the world. Food legumes in the past have drawn limited research funding and technological attention when compared to cereal crops. Physiological breeding strategies that were proven to be successful in cereals are to be adapted to legume crop improvement to realize their potential. The gap between breeders and physiologists should be narrowed by collaborative approaches to understand complex traits in legumes. This review discusses the potential of physiology based approaches in food legume breeding and how they impact yield gains and abiotic stress tolerance in these crops. The influence of roots and root system architectures in food legumes’ breeding is also discussed. Molecular breeding to map the relevant physiological traits and the potentials of gene editing those traits are detailed. It is imperative to unlock the potentials of these underutilized crops to attain sustainable environmental and nutritional food security.

2020 ◽  
Vol 21 (11) ◽  
pp. 4040 ◽  
Author(s):  
Waquar A. Ansari ◽  
Sonali U. Chandanshive ◽  
Vacha Bhatt ◽  
Altafhusain B. Nadaf ◽  
Sanskriti Vats ◽  
...  

Over the past decades, numerous efforts were made towards the improvement of cereal crops mostly employing traditional or molecular breeding approaches. The current scenario made it possible to efficiently explore molecular understanding by targeting different genes to achieve desirable plants. To provide guaranteed food security for the rising world population particularly under vulnerable climatic condition, development of high yielding stress tolerant crops is needed. In this regard, technologies upgradation in the field of genome editing looks promising. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 is a rapidly growing genome editing technique being effectively applied in different organisms, that includes both model and crop plants. In recent times CRISPR/Cas9 is being considered as a technology which revolutionized fundamental as well as applied research in plant breeding. Genome editing using CRISPR/Cas9 system has been successfully demonstrated in many cereal crops including rice, wheat, maize, and barley. Availability of whole genome sequence information for number of crops along with the advancement in genome-editing techniques provides several possibilities to achieve desirable traits. In this review, the options available for crop improvement by implementing CRISPR/Cas9 based genome-editing techniques with special emphasis on cereal crops have been summarized. Recent advances providing opportunities to simultaneously edit many target genes were also discussed. The review also addressed recent advancements enabling precise base editing and gene expression modifications. In addition, the article also highlighted limitations such as transformation efficiency, specific promoters and most importantly the ethical and regulatory issues related to commercial release of novel crop varieties developed through genome editing.


2021 ◽  
Author(s):  
Smitha Kunhiraman Vasumathy ◽  
Manickavelu Alagu

Abstract I. Background: As rice is the staple food for more than half of the world population, enhancing grain yield irrespective of the variable climatic conditions is indispensable. Many of the traditionally cultivated rice landraces are well adapted to severe environmental conditions and have high genetic diversity that could play an important role in crop improvement.II. Methods and Results: The present study disclosed high level of genetic diversity among the unexploited rice landraces cultivated by farmers of Kerala. Twelve polymorphic markers detected a total of seventy- seven alleles with an average of 6.416 alleles per locus. PIC value ranged from 0.459 to 0.809 and to differentiate the rice genotypes, RM 242 was found to be the most appropriate marker with the highest value of 0.809. The current study indicated that the rice landraces were highly diverse with higher values of the effective number of alleles, PIC, and Shannon information index and utilizing these informative SSR markers for future molecular characterization and population genetic studies in rice landraces are advisable. Haplotypes are sets of genomic regions within a chromosome that are inherited together and haplotype-based breeding is a promising strategy for designing next-generation rice varieties. Here, haplotype analysis explored 270 haplotype blocks and 775 haplotypes from all the chromosomes of landraces under study. The number of SNPs in each haplotype block ranged from two to 28. Haplotypes of genes related to biotic and abiotic stress tolerance, yield-enhancing, and growth and development in rice landraces were also elucidated in the current study.III. Conclusions: The present investigation revealed genetic diversity of rice landraces and the haplotype analysis will open the way for genome wide association studies, QTL identification, and marker assisted selection in the unexplored rice landraces collected from Kerala.


2016 ◽  
Vol 3 (1) ◽  
Author(s):  
YASIN JESHIMA KHAN ◽  
HUSNARA Tyagi ◽  
Anil kumar Singh ◽  
Santosh kumar. Magadum

Plants respond through a cascade of reactions resulting in varied cellular environment leading to alterations in the patterns of protein expression resulting in phonotypic changes. Single cell genomics and global proteomics came out to be powerful tools and efficient techniques in studying stress tolerant plants. Non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. Small ncRNAs play a vital role in post transcriptional gene regulation by either translational repression or by inducing mRNA cleavage. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs too have a similar structure, function, and biogenesis like miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences.In this review, we focus on the involvement of ncRNAs in comabting abiotic stresses of soybean. This review emphasis on previously known miRNAs as they play important role in several abiotic stresses like drought, salinity, chilling and heat stress by their diverse roles in mediating biological processes like gene expression, chromatin formation, defense of genome against invading viruses. This review attempts to elucidate the various kinds of non-coding RNAs explored, their discovery, biogenesis, functions, and response for different type of abiotic stresses and future aspects for crop improvement in the context of soybean, a representative grain legume.


Author(s):  
Sridevi Muppala ◽  
Pavan Kumar Gudlavalleti ◽  
Kodandarami Reddy Malireddy ◽  
Sateesh Kumar Puligundla ◽  
Premalatha Dasari

Abstract Background In crop plants, to cope up with the demand of food for rising population, revolutionary crop improvement programmes are being implemented for higher and higher yields. Abiotic stress, especially at flowering stage, causes drastic effect on yield in plants. Deforestation and urbanization made the water table very low and changed the climate which led to untimely and unforeseen rains which affect the yield of a crop through stress, both by lack of water as well as water logging (abiotic stress). Development of tolerant plants through breeding is a time-consuming programme and does not perform well in normal conditions. Development of stress-tolerant plants through transgenic technology is the better solution. Maize is a major crop used as food and fodder and has the commercial value in ethanol production. Hence, the genes viz., nced (9-cis-epoxycarotenoid dioxygenase) and rpk (receptor-like protein kinase), which play the key roles in the abscisic acid pathway and upstream component in ABA signaling have been transferred into maize plants through Agrobacterium-mediated transformation by optimizing several parameters to obtain maximum frequency of transformation. Results Cultures raised from immature embryos of 2-mm size isolated from maize cobs, 12–15 days after pollination, were used for transformation. rpk and nced genes under the control of leaP and salT promoters respectively, cloned using gateway technology, have been introduced into elite maize inbred lines. Maximum frequency of transformation was observed with the callus infected after 20 days of inoculation by using 100 μM acetosyringone, 10 min infection time, and 2 days incubation period after co-cultivation resulted in maximum frequency of transformation (6%) in the NM5884 inbred line. Integration of the genes has been confirmed with molecular characterization by performing PCRs with marker as well as gene-specific primers and through southern hybridization. Physiological and biochemical characterization was done in vitro (artificial stress) and in vivo (pot experiments). Conclusions Changes in the parameters which affect the transformation frequency yielded maximum frequency of transformation with 20-day-old callus in the NM5884 inbred line. Introducing two or more genes using gateway technology is useful for developing stable transgenic plants with desired characters, abiotic stress tolerance in this study.


2021 ◽  
Vol 22 (11) ◽  
pp. 5585
Author(s):  
Sajid Fiaz ◽  
Sunny Ahmar ◽  
Sajjad Saeed ◽  
Aamir Riaz ◽  
Freddy Mora-Poblete ◽  
...  

A world with zero hunger is possible only through a sustainable increase in food production and distribution and the elimination of poverty. Scientific, logistical, and humanitarian approaches must be employed simultaneously to ensure food security, starting with farmers and breeders and extending to policy makers and governments. The current agricultural production system is facing the challenge of sustainably increasing grain quality and yield and enhancing resistance to biotic and abiotic stress under the intensifying pressure of climate change. Under present circumstances, conventional breeding techniques are not sufficient. Innovation in plant breeding is critical in managing agricultural challenges and achieving sustainable crop production. Novel plant breeding techniques, involving a series of developments from genome editing techniques to speed breeding and the integration of omics technology, offer relevant, versatile, cost-effective, and less time-consuming ways of achieving precision in plant breeding. Opportunities to edit agriculturally significant genes now exist as a result of new genome editing techniques. These range from random (physical and chemical mutagens) to non-random meganucleases (MegaN), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein system 9 (CRISPR/Cas9), the CRISPR system from Prevotella and Francisella1 (Cpf1), base editing (BE), and prime editing (PE). Genome editing techniques that promote crop improvement through hybrid seed production, induced apomixis, and resistance to biotic and abiotic stress are prioritized when selecting for genetic gain in a restricted timeframe. The novel CRISPR-associated protein system 9 variants, namely BE and PE, can generate transgene-free plants with more frequency and are therefore being used for knocking out of genes of interest. We provide a comprehensive review of the evolution of genome editing technologies, especially the application of the third-generation genome editing technologies to achieve various plant breeding objectives within the regulatory regimes adopted by various countries. Future development and the optimization of forward and reverse genetics to achieve food security are evaluated.


2021 ◽  
Vol 940 (1) ◽  
pp. 012089
Author(s):  
H Pribadi ◽  
S Jumiyati ◽  
A Muis ◽  
I K Widnyana ◽  
J Mustabi

Abstract The rate of world population growth gets faster every year, while on the other hand the land available for food production activities is increasingly limited. Efforts to increase income and food crop production by using cocoa farming to support national food security can be done by optimizing of land through crop diversification patterns by planting local tubers under cocoa farming. This research aims to analyze the optimization of land use, revenue and production costs. In addition, analyzing the nutritional content contained in each type of local tubers, namely sweet potato, cassava and taro. The research was conducted in the the buffer zone of Lore Lindu National Park (TNLL), Palolo District, Sigi Regency, Central Sulawesi Province, Indonesia. The results showed that the optimization of land use and revenue was obtained through the diversification pattern of sweet potato and cocoa. Optimization of the costs use occurs in the use of fertilizer production inputs. In addition, sweet potatoes have a higher calorific value, protein and fat compared to cassava and taro. However, the carbohydrate content of cassava is higher than that of sweet potato and taro.


Author(s):  
Gayatri Sahu ◽  
Pragyan Paramita Rout ◽  
Suchismita Mohapatra ◽  
Sai Parasar Das ◽  
Poonam Preeti Pradhan

World population is increasing day by day and at the same time agriculture is threatened due to natural resource degradation and climate change. A growing global population and changing diets are driving up the demand for food. The food security challenge will only become more difficult, as the world will need to produce about 70 percent more food by 2050 to feed an estimated 9 billion people. Production stability, agricultural productivity, income and food security is negatively affected by changing climate. Therefore, agriculture must change according to present situation for meeting the need of food security and also withstanding under changing climatic situation. Agriculture is a prominent source as well as a sink of greenhouse gases (GHGs). So, there is a need to modify agricultural practices in a sustainable way to overcome these problems. Developing climate smart agriculture is thus crucial to achieving future food security and climate change goals. It helps the agricultural system to resist damage and recover quickly by adaptation and mitigation strategies. Sustainable Intensification is an essential means of adapting to climate change, also resulting in lower emissions per unit of output. With its emphasis on improving risk management, information flows and local institutions to support adaptive capacity, CSA provides the foundations for incentivizing and enabling intensification. Since climate smart agriculture is defined along three pillars (productivity increases, building resilience and adapting, and GHG emission reduction), key concepts such as productivity, resilience, vulnerability and carbon sequestration provide indicators for future empirical measurements of the climate smart agriculture concept.


Earth ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 45-71
Author(s):  
Dhurba Neupane ◽  
Pramila Adhikari ◽  
Dwarika Bhattarai ◽  
Birendra Rana ◽  
Zeeshan Ahmed ◽  
...  

Climate prediction models suggest that agricultural productivity will be significantly affected in the future. The expected rise in average global temperature due to the higher release of greenhouse gases (GHGs) into the atmosphere and increased depletion of water resources with enhanced climate variability will be a serious threat to world food security. Moreover, there is an increase in the frequency and severity of long-lasting drought events over 1/3rd of the global landmass and five times increase in water demand deficits during the 21st century. The top three cereals, wheat (Triticum aestivum), maize (Zea mays), and rice (Oryza sativa), are the major and staple food crops of most people across the world. To meet the food demand of the ever-increasing population, which is expected to increase by over 9 billion by 2050, there is a dire need to increase cereal production by approximately 70%. However, we have observed a dramatic decrease in area of fertile and arable land to grow these crops. This trend is likely to increase in the future. Therefore, this review article provides an extensive review on recent and future projected area and production, the growth requirements and greenhouse gas emissions and global warming potential of the top three cereal crops, the effects of climate change on their yields, and the morphological, physiological, biochemical, and hormonal responses of plants to drought. We also discuss the potential strategies to tackle the effects of climate change and increase yields. These strategies include integrated conventional and modern molecular techniques and genomic approach, the implementation of agronomic best management (ABM) practices, and growing climate resilient cereal crops, such as millets. Millets are less resource-intensive crops and release a lower amount of greenhouse gases compared to other cereals. Therefore, millets can be the potential next-generation crops for research to explore the climate-resilient traits and use the information for the improvement of major cereals.


Author(s):  
Saikat Biswas

Cereal crops such as maize, wheat, sorghum and pearl millet are important for human consumption due to their nutritional benefits. These cereals play pivotal roles to meet world’s food demand. However, maintenance of food security particularly in the circumstance of changing climate, constantly urges for modification of agro-techniques and one such modification is the incorporation of transplanting technique in these cereals as an alternative under a non-practicable situation of direct sowing. Transplanting is a method of transferring seedlings grown in nursery or others to the field. It has been already found to shorten the crop duration and improve germination, plant stand, seed and seedling quality parameters, growth, yield and economic profitability of these cereals. Besides, research findings are also available stating that transplanting helps these cereals to cope up with vagaries of weather and to exhibit greater radiation and water use efficiencies and suppression of weeds. Outcomes of transplanting are however dependent on various factors like methods of nursery raising, the variety used, mode of planting, age of seedlings etc. In spite of these prospects, transplanting technique is not so popular in these cereals due to poor dissemination, discouraging research findings, pest and disease problems, lack of suitable package of practices etc. Therefore, focuses are to be given in conducting more and more research trials to confirm its location and situation wise efficacy and also in developing and disseminating a suitable package of practices of transplanting accordingly.


Sign in / Sign up

Export Citation Format

Share Document