scholarly journals Silicon Priming Regulates Morpho-Physiological Growth and Oxidative Metabolism in Maize under Drought Stress

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 431 ◽  
Author(s):  
Abida Parveen ◽  
Wei Liu ◽  
Saddam Hussain ◽  
Jaleel Asghar ◽  
Shagufta Perveen ◽  
...  

Seed priming with silicon (Si) is an efficient and easy method to regulate plant tolerance against different abiotic stresses. A pot experiment was conducted to examine the Si-mediated changes in oxidative defense and some vital physio-biochemical parameters of maize under a limited water supply. For this purpose, two maize varieties (Pearl and Malka) with different Si priming treatments (0, 4 mM, 6 mM) were grown under a control and 60% field capacity for three weeks. At 60% field capacity, significant reductions in plant growth attributes and chlorophyll contents were recorded compared with the control. The negative effects of drought stress were more severe for Malka compared with Pearl. Drought stress increased the malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, altered the activities of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)), and triggered the accumulation of soluble sugars, glycine betaine, proline, and phenolics contents. Nevertheless, seed priming with silicon at 4 or 6 mM was effective in alleviating the detrimental effects of drought stress in both cultivars. Si priming particularly at 6 mM significantly enhanced the shoot and root lengths as well as their biomass and improved the levels of photosynthetic pigments. Moreover, Si treatments enhanced the activities of antioxidant enzymes (SOD, POD, and CAT) while it reduced the MDA and H2O2 contents in both cultivars under stress conditions. In crux, the present investigation suggests that Si priming mitigates the harmful effects of drought stress and contributes to the recovery of maize growth.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramadan Shemi ◽  
Rui Wang ◽  
El-Sayed M. S. Gheith ◽  
Hafiz Athar Hussain ◽  
Saddam Hussain ◽  
...  

AbstractDrought is one of the major environmental stresses that negatively affect the maize (Zea mays L.) growth and production throughout the world. Foliar applications of plant growth regulators, micronutrients or osmoprotectants for stimulating drought-tolerance in plants have been intensively reported. A controlled pot experiment was conducted to study the relative efficacy of salicylic acid (SA), zinc (Zn), and glycine betaine (GB) foliar applications on morphology, chlorophyll contents, relative water content (RWC), gas-exchange attributes, activities of antioxidant enzymes, accumulations of reactive oxygen species (ROS) and osmolytes, and yield attributes of maize plants exposed to two soil water conditions (85% field capacity: well-watered, 50% field capacity: drought stress) during critical growth stages. Drought stress significantly reduced the morphological parameters, yield and its components, RWC, chlorophyll contents, and gas-exchange parameters except for intercellular CO2 concentration, compared with well water conditions. However, the foliar applications considerably enhanced all the above parameters under drought. Drought stress significantly (p < 0.05) increased the hydrogen peroxide and superoxide anion contents, and enhanced the lipid peroxidation rate measured in terms of malonaldehyde (MDA) content. However, ROS and MDA contents were substantially decreased by foliar applications under drought stress. Antioxidant enzymes activity, proline content, and the soluble sugar were increased by foliar treatments under both well-watered and drought-stressed conditions. Overall, the application of GB was the most effective among all compounds to enhance the drought tolerance in maize through reduced levels of ROS, increased activities of antioxidant enzymes and higher accumulation of osmolytes contents.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Alireza Khaleghi ◽  
Rohangiz Naderi ◽  
Cecilia Brunetti ◽  
Bianca Elena Maserti ◽  
Seyed Alireza Salami ◽  
...  

AbstractDrought is one of the most important environmental factor limiting the growth of woody and non woody plants. In the present paper, we aimed to explore the performance of Maclura pomifera under a prolonged drought period followed by re-watering. M. pomifera plants were exposed to four different watering regimes (100%, 75%, 50% and 30% of the field capacity (FC)) for three weeks and then rewatered. The exposure to drought affected physiological, morphological and biochemical traits of M. pomifera. Leaf area, relative water content and water potential of leaf decreased in parallel with increased water deficit. Malondialdehyde content increased along with the drought stress experiment. Soluble carbohydrates (sucrose, glucose and fructose) accumulated during drought stress, but decreased after 22 days of water deficit in severe stressed plants (30% FC). Proline and mannitol, two compatible osmolytes, were higher in drought stresses plants than in control plants. Additionally the activity of antioxidant enzymes (SOD, APX, DHAR and GR) resulted affected by drought stress. In the recovery period, the physiological parameters as well as the proline content recovered at control levels, whereas soluble sugars, mannitol and total activity of antioxidant enzymes remained slight higher than in control plants, presumably to allow plants a complete recovery after stress. Our results suggest that M. pomifera has a good adaptive response to drought stress, probably corresponded to decreasing oxidative injury by induction of the antioxidant system and accumulation of stable and protective osmolytes such as proline and mannitol at higher rates.


Author(s):  
Maryam Noori ◽  
Alireza Motallebi Azar ◽  
Mehdi Saidi ◽  
Jaber Panahandeh ◽  
Davoud Zare Haghi

This experiment was conducted to evaluate the effects of drought stress on some quality traits of tomato, seven tomato lines were assessed in an experimental field at Ilam University in 2016. The layout was split plots according to randomized complete block design (RCBD) with 3 levels of drought stress including 100, 60% and 40% of field capacity with 3 replications. The genotypes were including King stone, Peto early, Bitstoik, LA1607, LA2656, LA2080 and LA1579. The effect of mild and severe drought stress on the activity of antioxidant enzymes, including peroxidase, catalase and ascorbate peroxidase were investigated. The statistical analysis showed that drought stress significantly affected all assessed traits under drought condition. CAT, chlorophyll content and RWC were reduced, but, APX, POX, Proline and MAD content as well as electrolyte leakage increased and the highest content was observed under severe drought stress (40%FC). The genotypes LA1607, LA2656, LA2080 and LA1579 identified as the most tolerant and King Stone, Peto early and Bitstoik were the most susceptible genotypes. Under severe drought stress, the highest RWC in LA2080, POX in LA1579, APX in LA1607, Chlorophyll a in LA2080, Chlorophyll b in Peto early, Chlorophyll T in Bitstoik and LA2080, EL in LA2080, MDA in Bitstoik and prolin in Petoearly were observed.


2016 ◽  
Vol 107 (1) ◽  
pp. 113 ◽  
Author(s):  
Maryam ZAHEDIFAR ◽  
Sadegh ZOHRABI

Effect of seed-priming with potassium (K) sources (K-nano-chelate, KNC, and sulfate (0, 2 and 4 %)) under drought stress (DS) conditions (0, -0.3, -0.6, -0.9, -1.2 and -1.5 MPa water potential) on the corn seedling traits was studied. Drought stress decreased the germination indices and seedling vigor. The highest germination, seminal root fresh and dry mass (RFM and RDM) was obtained in KNC primed seeds at -0.3 MPa DS. Mean germination time increased under DS conditions mainly in non-primed seeds. Increasing DS to -1.2 MPa led to decrease in RFM and RDM. Influence of DS on the fresh mass of shoots was more severe than on seminal roots. The highest shoots and seminal roots length was observed in 4 % KNC without any DS. Proper priming can be suggested to increase the plant tolerance under DS.


Author(s):  
Vanessa do Rosário Rosa ◽  
Adinan Alves da Silva ◽  
Danielle Santos Brito ◽  
José Domingos Pereira Júnior ◽  
Cíntia Oliveira Silva ◽  
...  

Abstract: The objective of this work was to evaluate the effects of drought stress in the reproductive stage (R3) on the physiological parameters and grain yield of two soybean (Glycine max) lines. The Vx-08-10819 and Vx-08-11614 soybean lines were grown in a greenhouse, where they were irrigated until they reached the R3 development stage. During three days, the weight of the pots was monitored daily in order to maintain 100, 60, and 40% field capacity (control and moderate and severe stress, respectively). The parameters gas exchange and chlorophyll a fluorescence, as well as chloroplast pigments, osmoregulatory solutes and antioxidant enzymes, were determined. After stress, the plants were rehydrated until the end of the reproductive stage (R8), to evaluate grain yield. Vx-08-10819 showed traits that contributed to drought tolerance, such as better water-use efficiency, modulation of leaf area, and enzymatic activity, as well as a more efficient photosynthetic apparatus and a lower lipid peroxidation rate than Vx-08-11614. In addition, Vx-08-10819 maintained its productivity even after the severe water deficit. By contrast, water limitations affected negatively the productivity of Vx-08-11614. The Vx-08-10819 soybean line can efficiently withstand drought periods during the reproductive stage, without any interferences on final grain yield.


2021 ◽  
Vol 13 (14) ◽  
pp. 8069
Author(s):  
Muhammad Adeel Ghafar ◽  
Nudrat Aisha Akram ◽  
Muhammad Hamzah Saleem ◽  
Jianyong Wang ◽  
Leonard Wijaya ◽  
...  

Crop performance and yield are the results of genotypic expression as modulated by continuous interaction with the environment. Among the environmental aspects, drought and salinity are the most important factors, which limit the forages, including grasses, on a global basis. Grass species have the ability to grow under low water conditions and can produce high dry yield, proteins, and energy in areas exposed to drought stress. For this purpose, we conducted the present study to understand the response of forage grasses under drought stress from two different regions (Salt Range and Faisalabad) of Punjab, Pakistan. Two ecotypes of each grass species (Cenchrus ciliaris L. and Cyperus arenarius Retz.) were grown in pots at the botanical research area, Government College University Faisalabad, Pakistan. A group of plants were subjected to drought stress (60% field capacity) and controlled (100% field capacity) after three weeks of seed germination. The results from the present study depicted that the fresh and dry weights of root and shoot were decreased significantly under drought conditions. Moreover, C. ciliaris of the Salt Range area showed more resistance and higher growth production under drought stress. The chlorophyll (a and b) contents were also decreased significantly, while MDA, total soluble sugars, and proline levels were increased significantly under water-limited environments in the C. arenarius of Salt Range area. Enzymatic antioxidants (superoxidase dismutase (SOD) and peroxidase (POD)) and leaf Na+ were significantly raised in C. arenarius under drought stress collected from the Faisalabad region. Cenchrus ciliaris showed higher level of H2O2, total soluble proteins, glycinebetaine, catalase (CAT) and POD compared to C. arenarius. It also retained more leaf and root Ca2+, and root K+ under drought stress. It was concluded from the study that C. ciliaris is more resistant to drought in biomass production collected from the Salt Range area. The results suggested that C. ciliaris can be more widely used as a forage grass under water-scarce conditions as compared to C. arenarius.


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1119
Author(s):  
Basmah M. Alharbi ◽  
Awatif Mahfouz Abdulmajeed ◽  
Heba Hassan

To assess the effect of triacontanol (TRIA) on rice plants grown under normal or drought conditions, rice seeds were presoaked in TRIA (35 ppm) for two hours. After 20 days of sowing, rice seedlings developed from TRIA-treated or untreated seeds were subjected to drought stress. After 10 days of plant exposure to drought stress, data of major growth attributes and the content of photosynthetic pigments were recorded. Moreover, the effect of drought stress on stomatal conductance and the photochemical efficiency of PSII (Fv/Fm) were followed. The data obtained indicated that the species of rice (Oryza sativa L.) cultivar Giza 177 under investigation was sensitive to drought stress where there were significant decreases in the fresh and dry weights of shoots and roots and in stomatal conductance, as well as in the content of chlorophyll a, chlorophyll b, and carotenoids. Seed priming with TRIA enhanced both growth and acquired plant tolerance to drought stress. Thus, TRIA via the enhancement of stomatal conductance through the regulation of stomatal closure, the rate of water loss, ABA metabolism, the accumulation of osmolytes, and the regulation of aquaporins genes improved the water status of plants grown under water scarcity. Moreover, TRIA via increasing the content of free amino acids and sugars under drought stress may increase the chance of plant tissues to retain more water under scarcity conditions.


2019 ◽  
Vol 6 (4) ◽  
pp. 389-402 ◽  
Author(s):  
Sadam Hussain ◽  
Saddam Hussain ◽  
Tauqeer Qadir ◽  
Abdul Khaliq ◽  
Umair Ashraf ◽  
...  

Drought is considered as one of the major limiting factors affecting growth and productivity of crop plants. It severely affects the morphological and physiological activities of the plants and hampers the seed germination, root proliferation, biomass accumulation and final yield of field crops. Drought stress disrupts the biosynthesis of chlorophyll contents, carotene and decreases photosynthesis in plants. It gradually reduces CO2 assimilation rates owing to decrease in stomatal conductance. In addition, drought affects cell membrane stability and disrupts water relations of a plant by reducing water use efficiency. To cope with these situations, plants adopt different mechanisms such as drought tolerance, avoidance and escape. In this review, we discussed about the effects of drought on morphological and physiological characteristics of plants and suggested the different agronomic practices to overcome the deleterious effects of drought stress.


2021 ◽  
Vol 89 (1) ◽  
Author(s):  
Endah NURWAHYUNI ◽  
Eka Tarwaca Susila PUTRA

Oil palm productivity in Indonesia faces challenges related to drought that occur during the dry season. Calcium is an element that plays a role in determining the response of plant resistance to drought through biochemical activity. This study aims to determine the contribution of calcium in biochemical mechanisms involving various antioxidants. The treatment was arranged in factorial of 3 x 4 in a split-plot design. The first factor was calcium dosage, which consisted of 0 g (control/without calcium), 0.04 g, 0.08 g, and 0.12 g of calcium per plant. The second factor was the intensity of drought stress, referred as the Fraction of Transpirable Soil Water (FTSW) at 1 (control/field capacity), 0.35 (moderate drought), and 0.15 (severe drought) with a week duration of intensity. Calcium was applied in a ring placement on four-month-old seedlings planted in 40 x 40 cm polybags with alfisol soil planting medium and given drought treatment two months later for three weeks. The results showed that calcium could induce plant response to drought through the increase in superoxide dismutase (SOD) activity, the decrease in hydrogen peroxide   (H₂O₂) concentration, and the decrease in malondialdehyde (MDA) concentration. The study concluded that calcium is an essential element used to reduce the effects of drought on oil palm seedlings through the change of biochemical activities regulated by enzymatic antioxidants.


2021 ◽  
pp. 873-878
Author(s):  
Zhengong Yin ◽  
Xianxin Meng ◽  
Qiang Wang ◽  
Yifan Guo ◽  
Shuhong Wei ◽  
...  

Drought is one of the most severe environmental constraints which reduces common bean production worldwide. Exploration of the physiological mechanism of common bean under drought stress is important for the efficient production and variety selection of common beans. In the present study, non-droughtresistant variety (Longyundou10) and drought-resistant variety (Longyundou17) were identified to elucidate the effects of drought stress on antioxidant system of common beans at seedling stage. Under drought stress, APX and SOD activities showed a single peak curve that first increased and then decreased, and the dynamic changes of CAT and POD activities were more complicated. Under different levels of drought treatment, the average values of APX, SOD, CAT and POD activities of common bean were found to be higher than those of normal water conditions, and the average values were the highest under severe drought stress, indicating that these antioxidant enzymes were stimulated under drought stress. Bangladesh J. Bot. 50(3): 873-878, 2021 (September) Special


Sign in / Sign up

Export Citation Format

Share Document