scholarly journals New Insights into Evolution of Plant Heat Shock Factors (Hsfs) and Expression Analysis of Tea Genes in Response to Abiotic Stresses

Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 311
Author(s):  
Ping Xu ◽  
Qinwei Guo ◽  
Xin Pang ◽  
Peng Zhang ◽  
Dejuan Kong ◽  
...  

Heat shock transcription factor (Hsf) is one of key regulators in plant abotic stress response. Although the Hsf gene family has been identified from several plant species, original and evolution relationship have been fragmented. In addition, tea, an important crop, genome sequences have been completed and function of the Hsf family genes in response to abiotic stresses was not illuminated. In this study, a total of 4208 Hsf proteins were identified within 163 plant species from green algae (Gonium pectorale) to angiosperm (monocots and dicots), which were distributed unevenly into each of plant species tested. The result indicated that Hsf originated during the early evolutionary history of chlorophytae algae and genome-wide genetic varies had occurred during the course of evolution in plant species. Phylogenetic classification of Hsf genes from the representative nine plant species into ten subfamilies, each of which contained members from different plant species, imply that gene duplication had occurred during the course of evolution. In addition, based on RNA-seq data, the member of the Hsfs showed different expression levels in the different organs and at the different developmental stages in tea. Expression patterns also showed clear differences among Camellia species, indicating that regulation of Hsf genes expression varied between organs in a species-specific manner. Furthermore, expression of most Hsfs in response to drought, cold and salt stresses, imply a possible positive regulatory role under abiotic stresses. Expression profiles of nineteen Hsf genes in response to heat stress were also analyzed by quantitative real-time RT-PCR. Several stress-responsive Hsf genes were highly regulated by heat stress treatment. In conclusion, these results lay a solid foundation for us to elucidate the evolutionary origin of plant Hsfs and Hsf functions in tea response to abiotic stresses in the future.

2021 ◽  
Author(s):  
Fereshteh Ahmadi Teshniz ◽  
Behrouz Shiran ◽  
Sadegh Mousavi-Fard ◽  
Hossein Fallahi ◽  
Bojana Banović Đeri

Abstract Novel strategies for improvement of plants’ ornamental and other properties relay on miRNA control of differential plant gene expression modulation. Still, in response to the same abiotic stresses, some conserved miRNA families show different expression patterns in different plant species. In parallel, the use of deep sequencing technologies reveals new levels of complexity of regulatory networks in plants through identification of new miRNAs. These are two major reasons why more studies are needed before envisioned new strategies may take their course in practical application domain. This research revealed 21 conserved miRNAs, matching 15 miRNA families, in Fritilaria imperialis. Among identified conserved miRNA families in crown imperial, miR166, miR169 and miR396 families were the most abundant ones. The expression of seven conserved miRNAs (Fim-miR156b, Fim-miR159, Fim-miR166a-5p, Fim-miR169d-5p, Fim-miR171c, Fim-miR393 and Fim-miR396e-3p) was further investigated in different tissues and three developmental stages, suggesting different roles these miRNAs have in growth and development of crown imperial. Gained knowledge from this research can open the door to find efficient ways to secure crown imperial survival, preservation and utilization and if proven useful may be applied in other plant species as well.


2020 ◽  
Vol 21 (9) ◽  
pp. 3121 ◽  
Author(s):  
Huihui Bi ◽  
Yue Zhao ◽  
Huanhuan Li ◽  
Wenxuan Liu

Abiotic stresses are major constraints limiting crop growth and production. Heat shock factors (Hsfs) play significant roles in mediating plant resistance to various environmental stresses, including heat, drought and salinity. In this study, we explored the biological functions and underlying mechanisms of wheat TaHsfA6f in plant tolerance to various abiotic stresses. Gene expression profiles showed that TaHsfA6f has relatively high expression levels in wheat leaves at the reproductive stage. Transcript levels of TaHsfA6f were substantially up-regulated by heat, dehydration, salinity, low temperature, and multiple phytohormones, but was not induced by brassinosteroids (BR). Subcellular localization analyses revealed that TaHsfA6f is localized to the nucleus. Overexpression of the TaHsfA6f gene in Arabidopsis results in improved tolerance to heat, drought and salt stresses, enhanced sensitivity to exogenous abscisic acid (ABA), and increased accumulation of ABA. Furthermore, RNA-sequencing data demonstrated that TaHsfA6f functions through up-regulation of a number of genes involved in ABA metabolism and signaling, and other stress-associated genes. Collectively, these results provide evidence that TaHsfA6f participates in the regulation of multiple abiotic stresses, and that TaHsfA6f could serve as a valuable gene for genetic modification of crop abiotic stress tolerance.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9336
Author(s):  
Zhihao Hou ◽  
Qiang Chen ◽  
Mengran Zhao ◽  
Chenyang Huang ◽  
Xiangli Wu

Pleurotus ostreatus is one of the most widely cultivated mushrooms in China. The regulatory mechanisms of fruiting body formation and the response to heat stress in P. ostreatus are main research focuses. The Zn(II)2Cys6 family is one of the largest families of transcriptional factors and plays important roles in multiple biological processes in fungi. In this study, we identified 66 zinc cluster proteins in P. ostreatus (PoZCPs) through a genome-wide search. The PoZCPs were classified into 15 types according to their zinc cluster domain. Physical and chemical property analyses showed a huge diversity among the PoZCPs. Phylogenetic analysis of PoZCPs classified these proteins into six groups and conserved motif combinations and similar gene structures were observed in each group. The expression profiles of these PoZCP genes during different developmental stages and under heat stress were further investigated by RNA-sequencing (RNA-seq), revealing diverse expression patterns. A total of 13 PoZCPs that may participate in development or the heat stress response were selected for validation of their expression levels through real-time quantitative PCR (RT-qPCR) analysis, and some developmental stage-specific and heat stress-responsive candidates were identified. The findings contribute to our understanding of the roles and regulatory mechanisms of ZCPs in P. ostreatus.


2021 ◽  
Vol 49 (1) ◽  
pp. 12191
Author(s):  
Wei ZHENG ◽  
Ziwei ZHANG ◽  
Xuefei YU ◽  
Tongtong XIE ◽  
Ning CHEN ◽  
...  

The WD40 transcription factor (TF) family is widespread in plants and plays important roles in plant growth and development, transcriptional regulation, and tolerance to abiotic stresses. WD40 TFs have been identified and characterized in a diverse series of plant species. However, little information is available on WD40 genes from D. longan. In this study, a total of 45 DlWD40 genes were identified from D. longan RNA-Seq data, and further analysed by bioinformatics tools. Also, the expression patterns of DlWD40 genes in roots and leaves, as well as responses to heat stress, were evaluated using quantitative real-time PCR (qRT-PCR). We found that the 45 DlWD40 proteins, together with 80 WD40 proteins from Arabidopsis and Zea mays, could be categorized into six groups. Of these, the DlWD40-4 protein was highly homologous to Arabidopsis WDR5a, a protein participating in tolerance to abiotic stresses. Moreover, a total of 25 cis-acting elements, such as abiotic stress and flavonoid biosynthesis elements, were found in the promoters of DlWD40 genes. The DlWD40-33 gene is targeted by miR3627, which has been proposed to be involved in flavonoid biosynthesis. Using qRT-PCR, ten of the 45 DlWD40 genes were demonstrated to have diverse expression patterns between roots and leaves, and these ten DlWD40 genes could also respond to varying durations of a 38 °C heat stress in roots and leaves. The results reported here will provide a basis for the further functional verification of DlWD40 genes in D. longan.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yalong Sun ◽  
Haishen Wen ◽  
Yuan Tian ◽  
Xuebin Mao ◽  
Xiurong Li ◽  
...  

Heat shock proteins (HSPs) are a large class of highly conserved chaperons, which play important roles in response to elevated temperature and other environmental stressors. In the present study, 5 HSP90 genes and 17 HSP70 genes were systematically characterized in spotted seabass (Lateolabrax maculatus). The evolutionary footprint of HSP genes was revealed via the analysis of phylogeny, chromosome location, and gene copy numbers. In addition, the gene structure features and the putative distribution of heat shock elements (HSEs) and hypoxia response elements (HREs) in the promoter regions were analyzed. The protein-protein interaction (PPI) network analyses results indicated the potential transcriptional regulation between the heat shock factor 1 (HSF1) and HSPs and a wide range of interactions among HSPs. Furthermore, quantitative (q)PCR was performed to detect the expression profiles of HSP90 and HSP70 genes in gill, liver, and muscle tissues after heat stress, meanwhile, the expression patterns in gills under alkalinity and hypoxia stresses were determined by analyzing RNA-Seq datasets. Results showed that after heat stress, most of the examined HSP genes were significantly upregulated in a tissue-specific and time-dependent manners, and hsp90aa1.1, hsp90aa1.2, hsp70.1, and hsp70.2 were the most intense responsive genes in all three tissues. In response to alkalinity stress, 11 out of 13 significantly regulated HSP genes exhibited suppressed expression patterns. Alternatively, among the 12 hypoxia-responsive-expressed HSP genes, 7 genes showed induced expressions, while hsp90aa1.2, hsp70.1, and hsp70.2 had more significant upregulated changes after hypoxic challenge. Our findings provide the essential basis for further functional studies of HSP genes in response to abiotic stresses in spotted seabass.


2021 ◽  
Vol 19 (1) ◽  
pp. 44-57
Author(s):  
Sirine Werghi ◽  
Charfeddine Gharsallah ◽  
Nishi Kant Bhardwaj ◽  
Hatem Fakhfakh ◽  
Faten Gorsane

AbstractDuring recent decades, global warming has intensified, altering crop growth, development and survival. To overcome changes in their environment, plants undergo transcriptional reprogramming to activate stress response strategies/pathways. To evaluate the genetic bases of the response to heat stress, Conserved DNA-derived Polymorphism (CDDP) markers were applied across tomato genome of eight cultivars. Despite scattered genotypes, cluster analysis allowed two neighbouring panels to be discriminate. Tomato CDDP-genotypic and visual phenotypic assortment permitted the selection of two contrasting heat-tolerant and heat-sensitive cultivars. Further analysis explored differential expression in transcript levels of genes, encoding heat shock transcription factors (HSFs, HsfA1, HsfA2, HsfB1), members of the heat shock protein (HSP) family (HSP101, HSP17, HSP90) and ascorbate peroxidase (APX) enzymes (APX1, APX2). Based on discriminating CDDP-markers, a protein functional network was built allowing prediction of candidate genes and their regulating miRNA. Expression patterns analysis revealed that miR156d and miR397 were heat-responsive showing a typical inverse relation with the abundance of their target gene transcripts. Heat stress is inducing a set of candidate genes, whose expression seems to be modulated through a complex regulatory network. Integrating genetic resource data is required for identifying valuable tomato genotypes that can be considered in marker-assisted breeding programmes to improve tomato heat tolerance.


2019 ◽  
Vol 20 (13) ◽  
pp. 3235 ◽  
Author(s):  
Yanguo Ke ◽  
Farhat Abbas ◽  
Yiwei Zhou ◽  
Rangcai Yu ◽  
Yuechong Yue ◽  
...  

Auxin plays a key role in different plant growth and development processes, including flower opening and development. The perception and signaling of auxin depend on the cooperative action of various components, among which auxin/indole-3-acetic acid (Aux/IAA) proteins play an imperative role. In a recent study, the entire Aux/IAA gene family was identified and comprehensively analyzed in Hedychium coronarium, a scented species used as an ornamental plant for cut flowers. Phylogenetic analysis showed that the Aux/IAA gene family in H. coronarium is slightly contracted compared to Arabidopsis, with low levels of non-canonical proteins. Sequence analysis of promoters showed numerous cis-regulatory elements related to various phytohormones. HcIAA genes showed distinct expression patterns in different tissues and flower developmental stages, and some HcIAA genes showed significant responses to auxin and ethylene, indicating that Aux/IAAs may play an important role in linking hormone signaling pathways. Based on the expression profiles, HcIAA2, HcIAA4, HcIAA6 and HcIAA12, were selected as candidate genes and HcIAA2 and HcIAA4 were screened for further characterization. Downregulation of HcIAA2 and HcIAA4 by virus-induced gene silencing in H. coronarium flowers modified the total volatile compound content, suggesting that HcIAA2 and HcIAA4 play important roles in H. coronarium floral scent formation. The results presented here will provide insights into the putative roles of HcIAA genes and will assist the elucidation of their precise roles during floral scent formation.


Sign in / Sign up

Export Citation Format

Share Document